37,870 research outputs found

    A convex combinatorial property of compact sets in the plane and its roots in lattice theory

    Get PDF
    K. Adaricheva and M. Bolat have recently proved that if U0U_0 and U1U_1 are circles in a triangle with vertices A0,A1,A2A_0,A_1,A_2, then there exist j∈{0,1,2}j\in \{0,1,2\} and k∈{0,1}k\in\{0,1\} such that U1−kU_{1-k} is included in the convex hull of UkâˆȘ({A0,A1,A2}∖{Aj})U_k\cup(\{A_0,A_1, A_2\}\setminus\{A_j\}). One could say disks instead of circles. Here we prove the existence of such a jj and kk for the more general case where U0U_0 and U1U_1 are compact sets in the plane such that U1U_1 is obtained from U0U_0 by a positive homothety or by a translation. Also, we give a short survey to show how lattice theoretical antecedents, including a series of papers on planar semimodular lattices by G. Gratzer and E. Knapp, lead to our result.Comment: 28 pages, 7 figure

    Generalisations of Tropical Geometry over Hyperfields

    Get PDF
    Hyperfields are structures that generalise the notion of a field by way of allowing the addition operation to be multivalued. The aim of this thesis is to examine generalisations of classical theory from algebraic geometry and its combinatorial shadow, tropical geometry. We present a thorough description of the hyperfield landscape, where the key concepts are introduced. Kapranov’s theorem is a cornerstone result from tropical geometry, relating the tropicalisation function and solutions sets of polynomials. We generalise Kapranov’s Theorem for a class of relatively algebraically closed hyperfield homomorphisms. Tropical ideals are reviewed and we propose the property of matroidal equivalence as a method of associating the geometric objects defined by tropical ideals. The definitions of conic and convex sets are appropriately adjusted allowing for convex geometry over ordered hyperfields to be studied

    Threshold functions and Poisson convergence for systems of equations in random sets

    Get PDF
    We present a unified framework to study threshold functions for the existence of solutions to linear systems of equations in random sets which includes arithmetic progressions, sum-free sets, Bh[g]B_{h}[g]-sets and Hilbert cubes. In particular, we show that there exists a threshold function for the property "A\mathcal{A} contains a non-trivial solution of M⋅x=0M\cdot\textbf{x}=\textbf{0}", where A\mathcal{A} is a random set and each of its elements is chosen independently with the same probability from the interval of integers {1,
,n}\{1,\dots,n\}. Our study contains a formal definition of trivial solutions for any combinatorial structure, extending a previous definition by Ruzsa when dealing with a single equation. Furthermore, we study the behaviour of the distribution of the number of non-trivial solutions at the threshold scale. We show that it converges to a Poisson distribution whose parameter depends on the volumes of certain convex polytopes arising from the linear system under study as well as the symmetry inherent in the structures, which we formally define and characterize.Comment: New version with minor corrections and changes in notation. 24 Page

    Quivers and path semigroups characterized by locality conditions

    Full text link
    The notion of locality semigroups was recently introduced with motivation from locality in convex geometry and quantum field theory. We show that there is a natural correspondence between locality sets and quivers which leads to a concrete class of locality semigroups given by the paths of quivers. Further these path semigroups from paths are precisely the free objects in the category of locality semigroups with a rigid condition. This characterization gives a universal property of path algebras and at the same time a combinatorial realization of free rigid locality semigroups.Comment: 17 page

    COMs: Complexes of Oriented Matroids

    Full text link
    In his seminal 1983 paper, Jim Lawrence introduced lopsided sets and featured them as asymmetric counterparts of oriented matroids, both sharing the key property of strong elimination. Moreover, symmetry of faces holds in both structures as well as in the so-called affine oriented matroids. These two fundamental properties (formulated for covectors) together lead to the natural notion of "conditional oriented matroid" (abbreviated COM). These novel structures can be characterized in terms of three cocircuits axioms, generalizing the familiar characterization for oriented matroids. We describe a binary composition scheme by which every COM can successively be erected as a certain complex of oriented matroids, in essentially the same way as a lopsided set can be glued together from its maximal hypercube faces. A realizable COM is represented by a hyperplane arrangement restricted to an open convex set. Among these are the examples formed by linear extensions of ordered sets, generalizing the oriented matroids corresponding to the permutohedra. Relaxing realizability to local realizability, we capture a wider class of combinatorial objects: we show that non-positively curved Coxeter zonotopal complexes give rise to locally realizable COMs.Comment: 40 pages, 6 figures, (improved exposition

    On the Combinatorial Complexity of Approximating Polytopes

    Get PDF
    Approximating convex bodies succinctly by convex polytopes is a fundamental problem in discrete geometry. A convex body KK of diameter diam(K)\mathrm{diam}(K) is given in Euclidean dd-dimensional space, where dd is a constant. Given an error parameter Δ>0\varepsilon > 0, the objective is to determine a polytope of minimum combinatorial complexity whose Hausdorff distance from KK is at most Δ⋅diam(K)\varepsilon \cdot \mathrm{diam}(K). By combinatorial complexity we mean the total number of faces of all dimensions of the polytope. A well-known result by Dudley implies that O(1/Δ(d−1)/2)O(1/\varepsilon^{(d-1)/2}) facets suffice, and a dual result by Bronshteyn and Ivanov similarly bounds the number of vertices, but neither result bounds the total combinatorial complexity. We show that there exists an approximating polytope whose total combinatorial complexity is O~(1/Δ(d−1)/2)\tilde{O}(1/\varepsilon^{(d-1)/2}), where O~\tilde{O} conceals a polylogarithmic factor in 1/Δ1/\varepsilon. This is a significant improvement upon the best known bound, which is roughly O(1/Δd−2)O(1/\varepsilon^{d-2}). Our result is based on a novel combination of both old and new ideas. First, we employ Macbeath regions, a classical structure from the theory of convexity. The construction of our approximating polytope employs a new stratified placement of these regions. Second, in order to analyze the combinatorial complexity of the approximating polytope, we present a tight analysis of a width-based variant of B\'{a}r\'{a}ny and Larman's economical cap covering. Finally, we use a deterministic adaptation of the witness-collector technique (developed recently by Devillers et al.) in the context of our stratified construction.Comment: In Proceedings of the 32nd International Symposium Computational Geometry (SoCG 2016) and accepted to SoCG 2016 special issue of Discrete and Computational Geometr
    • 

    corecore