1,184 research outputs found

    The Complexity of Order Type Isomorphism

    Full text link
    The order type of a point set in RdR^d maps each (d+1)(d{+}1)-tuple of points to its orientation (e.g., clockwise or counterclockwise in R2R^2). Two point sets XX and YY have the same order type if there exists a mapping ff from XX to YY for which every (d+1)(d{+}1)-tuple (a1,a2,…,ad+1)(a_1,a_2,\ldots,a_{d+1}) of XX and the corresponding tuple (f(a1),f(a2),…,f(ad+1))(f(a_1),f(a_2),\ldots,f(a_{d+1})) in YY have the same orientation. In this paper we investigate the complexity of determining whether two point sets have the same order type. We provide an O(nd)O(n^d) algorithm for this task, thereby improving upon the O(n⌊3d/2⌋)O(n^{\lfloor{3d/2}\rfloor}) algorithm of Goodman and Pollack (1983). The algorithm uses only order type queries and also works for abstract order types (or acyclic oriented matroids). Our algorithm is optimal, both in the abstract setting and for realizable points sets if the algorithm only uses order type queries.Comment: Preliminary version of paper to appear at ACM-SIAM Symposium on Discrete Algorithms (SODA14

    An Algebra of Pieces of Space -- Hermann Grassmann to Gian Carlo Rota

    Full text link
    We sketch the outlines of Gian Carlo Rota's interaction with the ideas that Hermann Grassmann developed in his Ausdehnungslehre of 1844 and 1862, as adapted and explained by Giuseppe Peano in 1888. This leads us past what Rota variously called 'Grassmann-Cayley algebra', or 'Peano spaces', to the Whitney algebra of a matroid, and finally to a resolution of the question "What, really, was Grassmann's regressive product?". This final question is the subject of ongoing joint work with Andrea Brini, Francesco Regonati, and William Schmitt. The present paper was presented at the conference "The Digital Footprint of Gian-Carlo Rota: Marbles, Boxes and Philosophy" in Milano on 17 Feb 2009. It will appear in proceedings of that conference, to be published by Springer Verlag.Comment: 28 page

    Constructing packings in Grassmannian manifolds via alternating projection

    Get PDF
    This paper describes a numerical method for finding good packings in Grassmannian manifolds equipped with various metrics. This investigation also encompasses packing in projective spaces. In each case, producing a good packing is equivalent to constructing a matrix that has certain structural and spectral properties. By alternately enforcing the structural condition and then the spectral condition, it is often possible to reach a matrix that satisfies both. One may then extract a packing from this matrix. This approach is both powerful and versatile. In cases where experiments have been performed, the alternating projection method yields packings that compete with the best packings recorded. It also extends to problems that have not been studied numerically. For example, it can be used to produce packings of subspaces in real and complex Grassmannian spaces equipped with the Fubini--Study distance; these packings are valuable in wireless communications. One can prove that some of the novel configurations constructed by the algorithm have packing diameters that are nearly optimal.Comment: 41 pages, 7 tables, 4 figure

    R.A.Fisher, design theory, and the Indian connection

    Get PDF
    Design Theory, a branch of mathematics, was born out of the experimental statistics research of the population geneticist R. A. Fisher and of Indian mathematical statisticians in the 1930s. The field combines elements of combinatorics, finite projective geometries, Latin squares, and a variety of further mathematical structures, brought together in surprising ways. This essay will present these structures and ideas as well as how the field came together, in itself an interesting story.Comment: 11 pages, 3 figure
    • …
    corecore