25,521 research outputs found

    Optimal Ramp Schemes and Related Combinatorial Objects

    Get PDF
    In 1996, Jackson and Martin proved that a strong ideal ramp scheme is equivalent to an orthogonal array. However, there was no good characterization of ideal ramp schemes that are not strong. Here we show the equivalence of ideal ramp schemes to a new variant of orthogonal arrays that we term augmented orthogonal arrays. We give some constructions for these new kinds of arrays, and, as a consequence, we also provide parameter situations where ideal ramp schemes exist but strong ideal ramp schemes do not exist

    A unified approach to combinatorial key predistribution schemes for sensor networks

    Get PDF
    There have been numerous recent proposals for key predistribution schemes for wireless sensor networks based on various types of combinatorial structures such as designs and codes. Many of these schemes have very similar properties and are analysed in a similar manner. We seek to provide a unified framework to study these kinds of schemes. To do so, we define a new, general class of designs, termed “partially balanced t-designs”, that is sufficiently general that it encompasses almost all of the designs that have been proposed for combinatorial key predistribution schemes. However, this new class of designs still has sufficient structure that we are able to derive general formulas for the metrics of the resulting key predistribution schemes. These metrics can be evaluated for a particular scheme simply by substituting appropriate parameters of the underlying combinatorial structure into our general formulas. We also compare various classes of schemes based on different designs, and point out that some existing proposed schemes are in fact identical, even though their descriptions may seem different. We believe that our general framework should facilitate the analysis of proposals for combinatorial key predistribution schemes and their comparison with existing schemes, and also allow researchers to easily evaluate which scheme or schemes present the best combination of performance metrics for a given application scenario

    Derandomization and Group Testing

    Full text link
    The rapid development of derandomization theory, which is a fundamental area in theoretical computer science, has recently led to many surprising applications outside its initial intention. We will review some recent such developments related to combinatorial group testing. In its most basic setting, the aim of group testing is to identify a set of "positive" individuals in a population of items by taking groups of items and asking whether there is a positive in each group. In particular, we will discuss explicit constructions of optimal or nearly-optimal group testing schemes using "randomness-conducting" functions. Among such developments are constructions of error-correcting group testing schemes using randomness extractors and condensers, as well as threshold group testing schemes from lossless condensers.Comment: Invited Paper in Proceedings of 48th Annual Allerton Conference on Communication, Control, and Computing, 201

    Forman-Ricci flow for change detection in large dynamic data sets

    Full text link
    We present a viable solution to the challenging question of change detection in complex networks inferred from large dynamic data sets. Building on Forman's discretization of the classical notion of Ricci curvature, we introduce a novel geometric method to characterize different types of real-world networks with an emphasis on peer-to-peer networks. Furthermore we adapt the classical Ricci flow that already proved to be a powerful tool in image processing and graphics, to the case of undirected and weighted networks. The application of the proposed method on peer-to-peer networks yields insights into topological properties and the structure of their underlying data.Comment: Conference paper, accepted at ICICS 2016. (Updated version

    On the optimization of bipartite secret sharing schemes

    Get PDF
    Optimizing the ratio between the maximum length of the shares and the length of the secret value in secret sharing schemes for general access structures is an extremely difficult and long-standing open problem. In this paper, we study it for bipartite access structures, in which the set of participants is divided in two parts, and all participants in each part play an equivalent role. We focus on the search of lower bounds by using a special class of polymatroids that is introduced here, the tripartite ones. We present a method based on linear programming to compute, for every given bipartite access structure, the best lower bound that can be obtained by this combinatorial method. In addition, we obtain some general lower bounds that improve the previously known ones, and we construct optimal secret sharing schemes for a family of bipartite access structures.Peer ReviewedPostprint (author's final draft

    Efficiently Decodable Non-Adaptive Threshold Group Testing

    Full text link
    We consider non-adaptive threshold group testing for identification of up to dd defective items in a set of nn items, where a test is positive if it contains at least 2≀u≀d2 \leq u \leq d defective items, and negative otherwise. The defective items can be identified using t=O((du)u(dd−u)d−u(ulog⁥du+log⁥1Ï”)⋅d2log⁥n)t = O \left( \left( \frac{d}{u} \right)^u \left( \frac{d}{d - u} \right)^{d-u} \left(u \log{\frac{d}{u}} + \log{\frac{1}{\epsilon}} \right) \cdot d^2 \log{n} \right) tests with probability at least 1−ϔ1 - \epsilon for any Ï”>0\epsilon > 0 or t=O((du)u(dd−u)d−ud3log⁥n⋅log⁥nd)t = O \left( \left( \frac{d}{u} \right)^u \left( \frac{d}{d -u} \right)^{d - u} d^3 \log{n} \cdot \log{\frac{n}{d}} \right) tests with probability 1. The decoding time is t×poly(d2log⁥n)t \times \mathrm{poly}(d^2 \log{n}). This result significantly improves the best known results for decoding non-adaptive threshold group testing: O(nlog⁥n+nlog⁥1Ï”)O(n\log{n} + n \log{\frac{1}{\epsilon}}) for probabilistic decoding, where Ï”>0\epsilon > 0, and O(nulog⁥n)O(n^u \log{n}) for deterministic decoding
    • 

    corecore