14 research outputs found

    A preliminary approach to intelligent x-ray imaging for baggage inspection at airports

    Get PDF
    Identifying explosives in baggage at airports relies on being able to characterize the materials that make up an X-ray image. If a suspicion is generated during the imaging process (step 1), the image data could be enhanced by adapting the scanning parameters (step 2). This paper addresses the first part of this problem and uses textural signatures to recognize and characterize materials and hence enabling system control. Directional Gabor-type filtering was applied to a series of different X-ray images. Images were processed in such a way as to simulate a line scanning geometry. Based on our experiments with images of industrial standards and our own samples it was found that different materials could be characterized in terms of the frequency range and orientation of the filters. It was also found that the signal strength generated by the filters could be used as an indicator of visibility and optimum imaging conditions predicted

    Tackling the X-ray cargo inspection challenge using machine learning

    Get PDF
    The current infrastructure for non-intrusive inspection of cargo containers cannot accommodate exploding com-merce volumes and increasingly stringent regulations. There is a pressing need to develop methods to automate parts of the inspection workflow, enabling expert operators to focus on a manageable number of high-risk images. To tackle this challenge, we developed a modular framework for automated X-ray cargo image inspection. Employing state-of-the-art machine learning approaches, including deep learning, we demonstrate high performance for empty container verification and specific threat detection. This work constitutes a significant step towards the partial automation of X-ray cargo image inspection

    Towards Real-Time Anomaly Detection within X-ray Security Imagery: Self-Supervised Adversarial Training Approach

    Get PDF
    Automatic threat detection is an increasingly important area in X-ray security imaging since it is critical to aid screening operators to identify concealed threats. Due to the cluttered and occluded nature of X-ray baggage imagery and limited dataset availability, few studies in the literature have systematically evaluated the automated X-ray security screening. This thesis provides an exhaustive evaluation of the use of deep Convolutional Neural Networks (CNN) for the image classification and detection problems posed within the field. The use of transfer learning overcomes the limited availability of the object of interest data examples. A thorough evaluation reveals the superiority of the CNN features over conventional hand-crafted features. Further experimentation also demonstrates the capability of the supervised deep object detection techniques as object localization strategies within cluttered X-ray security imagery. By addressing the limitations of the current X-ray datasets such as annotation and class-imbalance, the thesis subsequently transitions the scope to- wards deep unsupervised techniques for the detection of anomalies based on the training on normal (benign) X-ray samples only. The proposed anomaly detection models within the thesis employ a conditional encoder-decoder generative adversarial network that jointly learns the generation of high-dimensional image space and the inference of latent space — minimizing the distance between these images and the latent vectors during training aids in learning the data distribution for the normal samples. As a result, a larger distance metric from this learned data distribution at inference time is indicative of an outlier from that distribution — an anomaly. Experimentation over several benchmark datasets, from varying domains, shows the model efficacy and superiority over previous state-of-the-art approaches. Based on the current approaches and open problems in deep learning, the thesis finally provides discussion and future directions for X-ray security imagery

    Signal processing algorithms for enhanced image fusion performance and assessment

    Get PDF
    The dissertation presents several signal processing algorithms for image fusion in noisy multimodal conditions. It introduces a novel image fusion method which performs well for image sets heavily corrupted by noise. As opposed to current image fusion schemes, the method has no requirements for a priori knowledge of the noise component. The image is decomposed with Chebyshev polynomials (CP) being used as basis functions to perform fusion at feature level. The properties of CP, namely fast convergence and smooth approximation, renders it ideal for heuristic and indiscriminate denoising fusion tasks. Quantitative evaluation using objective fusion assessment methods show favourable performance of the proposed scheme compared to previous efforts on image fusion, notably in heavily corrupted images. The approach is further improved by incorporating the advantages of CP with a state-of-the-art fusion technique named independent component analysis (ICA), for joint-fusion processing based on region saliency. Whilst CP fusion is robust under severe noise conditions, it is prone to eliminating high frequency information of the images involved, thereby limiting image sharpness. Fusion using ICA, on the other hand, performs well in transferring edges and other salient features of the input images into the composite output. The combination of both methods, coupled with several mathematical morphological operations in an algorithm fusion framework, is considered a viable solution. Again, according to the quantitative metrics the results of our proposed approach are very encouraging as far as joint fusion and denoising are concerned. Another focus of this dissertation is on a novel metric for image fusion evaluation that is based on texture. The conservation of background textural details is considered important in many fusion applications as they help define the image depth and structure, which may prove crucial in many surveillance and remote sensing applications. Our work aims to evaluate the performance of image fusion algorithms based on their ability to retain textural details from the fusion process. This is done by utilising the gray-level co-occurrence matrix (GLCM) model to extract second-order statistical features for the derivation of an image textural measure, which is then used to replace the edge-based calculations in an objective-based fusion metric. Performance evaluation on established fusion methods verifies that the proposed metric is viable, especially for multimodal scenarios

    Radiologie en super résolution et à double énergie

    Get PDF
    Deux méthodes sont combinées dans cet ouvrage pour automatiser le rehaussement des radiographies en super résolution et à double énergie. La première méthode, la populaire déconvolution de Lucy-Richardson, peut être optimisée s'il est possible de soustraire du signal original une information a priori tel le signal de fond. Ce signal peut être déduit par la seconde méthode qui consiste à produire une image synthétique constituée des tissus mous et de l'air présents dans la radiographie. Cette image synthétique est le fruit d'une nouvelle combinaison des images d'épaisseurs équivalentes d'aluminium et de methacrylate de polymethyle (Lucite) produites par la méthode de double énergie classique. En combinant les deux méthodes, une optimisation de la déconvolution en super résolution des images radiologiques est possible

    A dense plasma focus device as a pulsed neutron source for material identification

    Get PDF
    Doctor of PhilosophyDepartment of Mechanical and Nuclear EngineeringWilliam L. DunnDense plasma focus (DPF) devices are pulsed power devices capable of producing short-lived, hot and dense plasmas (~10[superscript]19 cm[superscript]-3) through a fast compression of plasma sheath. A DPF device provides intense bursts of electrons and ion beams, X-rays, and 2.5 MeV neutrons when operated with deuterium through the fusion reaction [superscript]2H(d,n)[superscript]3He. The Kansas State University DPF machine was designed and constructed in early 2010. The device was characterized to determine its performance as a neutron source. The device was shown to produce 5.0x10[superscript]7 neutrons/pulse using a tungsten-copper anode. Such machines have the advantages of being non-radioactive, movable, and producing short pulses (typically tens of nanoseconds), which allows rapid interrogation. The signature-based radiation-scanning (SBRS) method has been used to distinguish targets that contain explosives or explosive surrogates from targets that contain materials called “inert,” meaning they are not explosive-like. Different targets were placed in front of the DPF source at a distance of 45 cm. Four BC-418 plastic scintillators were used to measure the direct neutron yield and the neutrons scattered from various targets; the neutron source and the detectors were shielded with layers of lead, stainless steel, and borated polyethylene to shield against the X-rays and neutrons. One of the plastic scintillators was set at 70[supercript]o and two were set at 110[superscript]o from the line of the neutron beam; a bare [superscript]3He tube was used for detecting scattered thermal neutrons. Twelve metal cans of one-gallon each containing four explosive surrogates and eight inert materials were used as targets. Nine materials in five-gallon cans including three explosive surrogates were also used. The SBRS method indicated a capability to distinguish the explosive surrogates in both experiments, although the five gallon targets gave more accurate results. The MCNP code was used to validate the experimental work and to simulate real explosives. The simulations indicated the possibility to use the time of flight (TOF) technique in future experimental work, and were able to distinguish all the real explosives from the inert materials

    Fusion-based impairment modelling for an intelligent radar sensor architecture

    Get PDF
    An intelligent radar sensor concept has been developed using a modelling approach for prediction of sensor performance, based on application of sensor and environment models. Land clutter significantly impacts on the operation of radar sensors operating at low-grazing angles. The clutter modelling technique developed in this thesis for the prediction of land clutter forms the clutter model for the intelligent radar sensor. Fusion of remote sensing data is integral to the clutter modelling approach and is addressed by considering fusion of radar remote sensing data, and mitigation of speckle noise and data transmission impairments. The advantages of the intelligent sensor approach for predicting radar performance are demonstrated for several applications using measured data. The problem of predicting site-specific land radar performance is an important task which is complicated by the peculiarities and characteristics of the radar sensor, electromagnetic wave propagation, and the environment in which the radar is deployed. Airborne remote sensing data can provide information about the environment and terrain, which can be used to more accurately predict land radar performance. This thesis investigates how fusion of remote sensing data can be used in conjunction with a sensor modelling approach to enable site-specific prediction of land radar performance. The application of a radar sensor model and a priori information about the environment, gives rise to the notion of an intelligent radar sensor which can adapt to dynamically changing environments through intelligent processing of this a priori knowledge. This thesis advances the field of intelligent radar sensor design, through an approach based on fusion of a priori knowledge provided by remote sensing data, and application of a modelling approach to enable prediction of radar sensor performance. Original contributions are made in the areas of intelligent radar sensor development, improved estimation of land surface clutter intensity for site-specific low-grazing angle radar, and fusion and mitigation of sensor and data transmission impairments in radar remote sensing data.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Fusion-based impairment modelling for an intelligent radar sensor architecture

    Get PDF
    An intelligent radar sensor concept has been developed using a modelling approach for prediction of sensor performance, based on application of sensor and environment models. Land clutter significantly impacts on the operation of radar sensors operating at low-grazing angles. The clutter modelling technique developed in this thesis for the prediction of land clutter forms the clutter model for the intelligent radar sensor. Fusion of remote sensing data is integral to the clutter modelling approach and is addressed by considering fusion of radar remote sensing data, and mitigation of speckle noise and data transmission impairments. The advantages of the intelligent sensor approach for predicting radar performance are demonstrated for several applications using measured data. The problem of predicting site-specific land radar performance is an important task which is complicated by the peculiarities and characteristics of the radar sensor, electromagnetic wave propagation, and the environment in which the radar is deployed. Airborne remote sensing data can provide information about the environment and terrain, which can be used to more accurately predict land radar performance. This thesis investigates how fusion of remote sensing data can be used in conjunction with a sensor modelling approach to enable site-specific prediction of land radar performance. The application of a radar sensor model and a priori information about the environment, gives rise to the notion of an intelligent radar sensor which can adapt to dynamically changing environments through intelligent processing of this a priori knowledge. This thesis advances the field of intelligent radar sensor design, through an approach based on fusion of a priori knowledge provided by remote sensing data, and application of a modelling approach to enable prediction of radar sensor performance. Original contributions are made in the areas of intelligent radar sensor development, improved estimation of land surface clutter intensity for site-specific low-grazing angle radar, and fusion and mitigation of sensor and data transmission impairments in radar remote sensing data
    corecore