238 research outputs found

    A Color Constancy Model with Double-Opponency Mechanisms

    Full text link

    Colour Constancy: Biologically-inspired Contrast Variant Pooling Mechanism

    Get PDF
    Pooling is a ubiquitous operation in image processing algorithms that allows for higher-level processes to collect relevant low-level features from a region of interest. Currently, max-pooling is one of the most commonly used operators in the computational literature. However, it can lack robustness to outliers due to the fact that it relies merely on the peak of a function. Pooling mechanisms are also present in the primate visual cortex where neurons of higher cortical areas pool signals from lower ones. The receptive fields of these neurons have been shown to vary according to the contrast by aggregating signals over a larger region in the presence of low contrast stimuli. We hypothesise that this contrast-variant-pooling mechanism can address some of the shortcomings of max-pooling. We modelled this contrast variation through a histogram clipping in which the percentage of pooled signal is inversely proportional to the local contrast of an image. We tested our hypothesis by applying it to the phenomenon of colour constancy where a number of popular algorithms utilise a max-pooling step (e.g. White-Patch, Grey-Edge and Double-Opponency). For each of these methods, we investigated the consequences of replacing their original max-pooling by the proposed contrast-variant-pooling. Our experiments on three colour constancy benchmark datasets suggest that previous results can significantly improve by adopting a contrast-variant-pooling mechanism

    Colour constancy beyond the classical receptive field

    Get PDF
    The problem of removing illuminant variations to preserve the colours of objects (colour constancy) has already been solved by the human brain using mechanisms that rely largely on centre-surround computations of local contrast. In this paper we adopt some of these biological solutions described by long known physiological findings into a simple, fully automatic, functional model (termed Adaptive Surround Modulation or ASM). In ASM, the size of a visual neuron's receptive field (RF) as well as the relationship with its surround varies according to the local contrast within the stimulus, which in turn determines the nature of the centre-surround normalisation of cortical neurons higher up in the processing chain. We modelled colour constancy by means of two overlapping asymmetric Gaussian kernels whose sizes are adapted based on the contrast of the surround pixels, resembling the change of RF size. We simulated the contrast-dependent surround modulation by weighting the contribution of each Gaussian according to the centre-surround contrast. In the end, we obtained an estimation of the illuminant from the set of the most activated RFs' outputs. Our results on three single-illuminant and one multi-illuminant benchmark datasets show that ASM is highly competitive against the state-of-the-art and it even outperforms learning-based algorithms in one case. Moreover, the robustness of our model is more tangible if we consider that our results were obtained using the same parameters for all datasets, that is, mimicking how the human visual system operates. These results suggest a dynamical adaptation mechanisms contribute to achieving higher accuracy in computational colour constancy

    Target recognitions in multiple camera CCTV using colour constancy

    Get PDF
    People tracking using colour feature in crowded scene through CCTV network have been a popular and at the same time a very difficult topic in computer vision. It is mainly because of the difficulty for the acquisition of intrinsic signatures of targets from a single view of the scene. Many factors, such as variable illumination conditions and viewing angles, will induce illusive modification of intrinsic signatures of targets. The objective of this paper is to verify if colour constancy (CC) approach really helps people tracking in CCTV network system. We have testified a number of CC algorithms together with various colour descriptors, to assess the efficiencies of people recognitions from real multi-camera i-LIDS data set via Receiver Operating Characteristics (ROC). It is found that when CC is applied together with some form of colour restoration mechanisms such as colour transfer, the recognition performance can be improved by at least a factor of two. An elementary luminance based CC coupled with a pixel based colour transfer algorithm, together with experimental results are reported in the present paper

    The Constructive Nature of Color Vision and Its Neural Basis

    Get PDF
    Our visual world is made up of colored surfaces. The color of a surface is physically determined by its reflectance, i.e., how much energy it reflects as a function of wavelength. Reflected light, however, provides only ambiguous information about the color of a surface as it depends on the spectral properties of both the surface and the illumination. Despite the confounding effects of illumination on the reflected light, the visual system is remarkably good at inferring the reflectance of a surface, enabling observers to perceive surface colors as stable across illumination changes. This capacity of the visual system is called color constancy and it highlights that color vision is a constructive process. The research presented here investigates the neural basis of some of the most relevant aspects of the constructive nature of human color vision using machine learning algorithms and functional neuroimaging. The experiments demonstrate that color-related prior knowledge influences neural signals already in the earliest area of visual processing in the cortex, area V1, whereas in object imagery, perceived color shared neural representations with the color of the imagined objects in human V4. A direct test for illumination-invariant surface color representation showed that neural coding in V1 as well as a region anterior to human V4 was robust against illumination changes. In sum, the present research shows how different aspects of the constructive nature of color vision can be mapped to different regions in the ventral visual pathway

    Circuit Mechanisms Underlying Chromatic Encoding in Drosophila Photoreceptors

    Get PDF
    Color vision is widespread in the animal kingdom, and describes the ability to discriminate between objects purely based on the wavelengths that they reflect. Experiments across many species have isolated wavelength comparison in the brain as a computation underlying color vision. This comparison takes place in color opponent neurons, which respond with opposite polarity to wavelengths in different parts of the spectrum. In this work, I explore color opponency in the genetically tractable organism Drosophila melanogaster, where these circuits have only just begun to be described. Using two-photon calcium imaging, I measure the spectral tuning of photoreceptors in the fruit fly and identify circuit mechanisms that give rise to opponency. I find two pathways: an insect-specific pathway that compares wavelengths at each point in space, and a horizontal-cell-mediated pathway similar to that found in mammals. The horizontal-cell-mediated pathway enables additional spectral comparisons through lateral inhibition, expanding the range of chromatic encoding in the fly. Together, these two pathways enable efficient decorrelation and dimensionality reduction of photoreceptor signals while retaining maximal chromatic information. This dual mechanism combines motifs of both an insect-specific visual circuit and an evolutionarily convergent circuit architecture, endowing flies with the ability to extract chromatic information at distinct spatial resolutions

    Color vision in polychromatic animals

    Get PDF

    A tour of contemporary color vision research

    Get PDF
    The study of color vision encompasses many disciplines, including art, biochemistry, biophysics, brain imaging, cognitive neuroscience, color preferences, colorimetry, computer modelling, design, electrophysiology, language and cognition, molecular genetics, neuroscience, physiological optics, psychophysics and physiological optics. Coupled with the elusive nature of the subjective experience of color, this wide range of disciplines makes the study of color as challenging as it is fascinating. This overview of the special issue Color: Cone Opponency and Beyond outlines the state of the science of color, and points to some of the many questions that remain to be answered in this exciting field

    Mechanisms, functions and ecology of colour vision in the honeybee.

    Get PDF
    notes: PMCID: PMC4035557types: Journal Article© The Author(s) 2014.This is an open access article that is freely available in ORE or from Springerlink.com. Please cite the published version available at: http://link.springer.com/article/10.1007%2Fs00359-014-0915-1Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks.Biotechnology and Biological Sciences Research Council (BBSRC
    • …
    corecore