925 research outputs found

    Modeling Security and Resource Allocation for Mobile Multi-hop Wireless Neworks Using Game Theory

    Get PDF
    This dissertation presents novel approaches to modeling and analyzing security and resource allocation in mobile ad hoc networks (MANETs). The research involves the design, implementation and simulation of different models resulting in resource sharing and security’s strengthening of the network among mobile devices. Because of the mobility, the network topology may change quickly and unpredictably over time. Moreover, data-information sent from a source to a designated destination node, which is not nearby, has to route its information with the need of intermediary mobile nodes. However, not all intermediary nodes in the network are willing to participate in data-packet transfer of other nodes. The unwillingness to participate in data forwarding is because a node is built on limited resources such as energy-power and data. Due to their limited resource, nodes may not want to participate in the overall network objectives by forwarding data-packets of others in fear of depleting their energy power. To enforce cooperation among autonomous nodes, we design, implement and simulate new incentive mechanisms that used game theoretic concepts to analyze and model the strategic interactions among rationale nodes with conflicting interests. Since there is no central authority and the network is decentralized, to address the concerns of mobility of selfish nodes in MANETs, a model of security and trust relationship was designed and implemented to improve the impact of investment into trust mechanisms. A series of simulations was carried out that showed the strengthening of security in a network with selfish and malicious nodes. Our research involves bargaining for resources in a highly dynamic ad-hoc network. The design of a new arbitration mechanism for MANETs utilizes the Dirichlet distribution for fairness in allocating resources. Then, we investigated the problem of collusion nodes in mobile ad-hoc networks with an arbitrator. We model the collusion by having a group of nodes disrupting the bargaining process by not cooperating with the arbitrator. Finally, we investigated the resource allocation for a system between agility and recovery using the concept of Markov decision process. Simulation results showed that the proposed solutions may be helpful to decision-makers when allocating resources between separated teams

    Cloudarmor: Supporting Reputation-Based Trust Management for Cloud Services

    Get PDF
    Cloud services have become predominant in the current technological era. For the rich set of features provided by cloud services, consumers want to access the services while protecting their privacy. In this kind of environment, protection of cloud services will become a significant problem. So, research has started for a system, which lets the users access cloud services without losing the privacy of their data. Trust management and identity model makes sense in this case. The identity model maintains the authentication and authorization of the components involved in the system and trust-based model provides us with a dynamic way of identifying issues and attacks with the system and take appropriate actions. Further, a trust management-based system provides us with a new set of challenges such as reputation-based attacks, availability of components, and misleading trust feedbacks. Collusion attacks and Sybil attacks form a significant part of these challenges. This paper aims to solve the above problems in a trust management-based model by introducing a credibility model on top of a new trust management model, which addresses these use-cases, and also provides reliability and availability

    Towards Trustworthy, Efficient and Scalable Distributed Wireless Systems

    Get PDF
    Advances in wireless technologies have enabled distributed mobile devices to connect with each other to form distributed wireless systems. Due to the absence of infrastructure, distributed wireless systems require node cooperation in multi-hop routing. However, the openness and decentralized nature of distributed wireless systems where each node labors under a resource constraint introduces three challenges: (1) cooperation incentives that effectively encourage nodes to offer services and thwart the intentions of selfish and malicious nodes, (2) cooperation incentives that are efficient to deploy, use and maintain, and (3) routing to efficiently deliver messages with less overhead and lower delay. While most previous cooperation incentive mechanisms rely on either a reputation system or a price system, neither provides sufficiently effective cooperation incentives nor efficient resource consumption. Also, previous routing algorithms are not sufficiently efficient in terms of routing overhead or delay. In this research, we propose mechanisms to improve the trustworthiness, scalability, and efficiency of the distributed wireless systems. Regarding trustworthiness, we study previous cooperation incentives based on game theory models. We then propose an integrated system that combines a reputation system and a price system to leverage the advantages of both methods to provide trustworthy services. Analytical and simulation results show higher performance for the integrated system compared to the other two systems in terms of the effectiveness of the cooperation incentives and detection of selfish nodes. Regarding scalability in a large-scale system, we propose a hierarchical Account-aided Reputation Management system (ARM) to efficiently and effectively provide cooperation incentives with small overhead. To globally collect all node reputation information to accurately calculate node reputation information and detect abnormal reputation information with low overhead, ARM builds a hierarchical locality-aware Distributed Hash Table (DHT) infrastructure for the efficient and integrated operation of both reputation systems and price systems. Based on the DHT infrastructure, ARM can reduce the reputation management overhead in reputation and price systems. We also design a distributed reputation manager auditing protocol to detect a malicious reputation manager. The experimental results show that ARM can detect the uncooperative nodes that gain fraudulent benefits while still being considered as trustworthy in previous reputation and price systems. Also, it can effectively identify misreported, falsified, and conspiratorial information, providing accurate node reputations that truly reflect node behaviors. Regarding an efficient distributed system, we propose a social network and duration utility-based distributed multi-copy routing protocol for delay tolerant networks based on the ARM system. The routing protocol fully exploits node movement patterns in the social network to increase delivery throughput and decrease delivery delay while generating low overhead. The simulation results show that the proposed routing protocol outperforms the epidemic routing and spray and wait routing in terms of higher message delivery throughput, lower message delivery delay, lower message delivery overhead, and higher packet delivery success rate. The three components proposed in this dissertation research improve the trustworthiness, scalability, and efficiency of distributed wireless systems to meet the requirements of diversified distributed wireless applications

    Multimedia

    Get PDF
    The nowadays ubiquitous and effortless digital data capture and processing capabilities offered by the majority of devices, lead to an unprecedented penetration of multimedia content in our everyday life. To make the most of this phenomenon, the rapidly increasing volume and usage of digitised content requires constant re-evaluation and adaptation of multimedia methodologies, in order to meet the relentless change of requirements from both the user and system perspectives. Advances in Multimedia provides readers with an overview of the ever-growing field of multimedia by bringing together various research studies and surveys from different subfields that point out such important aspects. Some of the main topics that this book deals with include: multimedia management in peer-to-peer structures & wireless networks, security characteristics in multimedia, semantic gap bridging for multimedia content and novel multimedia applications

    Secure Intelligent Vehicular Network Using Fog Computing

    Get PDF
    VANET (vehicular ad hoc network) has a main objective to improve driver safety and traffic efficiency. The intermittent exchange of real-time safety message delivery in VANET has become an urgent concern due to DoS (denial of service) and smart and normal intrusions (SNI) attacks. The intermittent communication of VANET generates huge amount of data which requires typical storage and intelligence infrastructure. Fog computing (FC) plays an important role in storage, computation, and communication needs. In this research, fog computing (FC) integrates with hybrid optimization algorithms (OAs) including the Cuckoo search algorithm (CSA), firefly algorithm (FA), firefly neural network, and the key distribution establishment (KDE) for authenticating both the network level and the node level against all attacks for trustworthiness in VANET. The proposed scheme is termed “Secure Intelligent Vehicular Network using fog computing” (SIVNFC). A feedforward back propagation neural network (FFBP-NN), also termed the firefly neural, is used as a classifier to distinguish between the attacking vehicles and genuine vehicles. The SIVNFC scheme is compared with the Cuckoo, the FA, and the firefly neural network to evaluate the quality of services (QoS) parameters such as jitter and throughput.http://dx.doi.org/10.3390/electronics804045

    A Survey on Modality Characteristics, Performance Evaluation Metrics, and Security for Traditional and Wearable Biometric Systems

    Get PDF
    Biometric research is directed increasingly towards Wearable Biometric Systems (WBS) for user authentication and identification. However, prior to engaging in WBS research, how their operational dynamics and design considerations differ from those of Traditional Biometric Systems (TBS) must be understood. While the current literature is cognizant of those differences, there is no effective work that summarizes the factors where TBS and WBS differ, namely, their modality characteristics, performance, security and privacy. To bridge the gap, this paper accordingly reviews and compares the key characteristics of modalities, contrasts the metrics used to evaluate system performance, and highlights the divergence in critical vulnerabilities, attacks and defenses for TBS and WBS. It further discusses how these factors affect the design considerations for WBS, the open challenges and future directions of research in these areas. In doing so, the paper provides a big-picture overview of the important avenues of challenges and potential solutions that researchers entering the field should be aware of. Hence, this survey aims to be a starting point for researchers in comprehending the fundamental differences between TBS and WBS before understanding the core challenges associated with WBS and its design

    Secure Intelligent Vehicular Network Including Real-Time Detection of DoS Attacks in IEEE 802.11P Using Fog Computing

    Get PDF
    VANET (Vehicular ad hoc network) has a main objective to improve driver safety and traffic efficiency. Intermittent exchange of real-time safety message delivery in VANET has become an urgent concern, due to DoS (Denial of service), and smart and normal intrusions (SNI) attacks. Intermittent communication of VANET generates huge amount of data which requires typical storage and intelligence infrastructure. Fog computing (FC) plays an important role in storage, computation, and communication need. In this research, Fog computing (FC) integrates with hybrid optimization algorithms (OAs) including: Cuckoo search algorithm (CSA), Firefly algorithm (FA) and Firefly neural network, in addition to key distribution establishment (KDE), for authenticating both the network level and the node level against all attacks for trustworthiness in VANET. The proposed scheme which is also termed “Secure Intelligent Vehicular Network using fog computing” (SIVNFC) utilizes feedforward back propagation neural network (FFBP-NN). This is also termed the firefly neural, is used as a classifier to distinguish between the attacking vehicles and genuine vehicles. The proposed scheme is initially compared with the Cuckoo and FA, and the Firefly neural network to evaluate the QoS parameters such as jitter and throughput. In addition, VANET is a means whereby Intelligent Transportation System (ITS) has become important for the benefit of daily lives. Therefore, real-time detection of all form attacks including hybrid DoS attacks in IEEE 802.11p, has become an urgent attention for VANET. This is due to sporadic real-time exchange of safety and road emergency message delivery in VANET. Sporadic communication in VANET has the tendency to generate enormous amount of message. This leads to the RSU (roadside unit) or the CPU (central processing unit) overutilization for computation. Therefore, it is required that efficient storage and intelligence VANET infrastructure architecture (VIA), which include trustworthiness is desired. Vehicular Cloud and Fog Computing (VFC) play an important role in efficient storage, computations, and communication need for VANET. This dissertation also utilizes VFC integration with hybrid optimization algorithms (OAs), which also possess swarm intelligence including: Cuckoo/CSA Artificial Bee Colony (ABC) Firefly/Genetic Algorithm (GA), in additionally to provide Real-time Detection of DoS attacks in IEEE 802.11p, using VFC for Intelligent Vehicular network. Vehicles are moving with certain speed and the data is transmitted at 30Mbps. Firefly FFBPNN (Feed forward back propagation neural network) has been used as a classifier to also distinguish between the attacked vehicles and the genuine vehicle. The proposed scheme has also been compared with Cuckoo/CSA ABC and Firefly GA by considering Jitter, Throughput and Prediction accuracy
    • …
    corecore