46,125 research outputs found

    A Collection of Challenging Optimization Problems in Science, Engineering and Economics

    Full text link
    Function optimization and finding simultaneous solutions of a system of nonlinear equations (SNE) are two closely related and important optimization problems. However, unlike in the case of function optimization in which one is required to find the global minimum and sometimes local minima, a database of challenging SNEs where one is required to find stationary points (extrama and saddle points) is not readily available. In this article, we initiate building such a database of important SNE (which also includes related function optimization problems), arising from Science, Engineering and Economics. After providing a short review of the most commonly used mathematical and computational approaches to find solutions of such systems, we provide a preliminary list of challenging problems by writing the Mathematical formulation down, briefly explaning the origin and importance of the problem and giving a short account on the currently known results, for each of the problems. We anticipate that this database will not only help benchmarking novel numerical methods for solving SNEs and function optimization problems but also will help advancing the corresponding research areas.Comment: Accepted as an invited contribution to the special session on Evolutionary Computation for Nonlinear Equation Systems at the 2015 IEEE Congress on Evolutionary Computation (at Sendai International Center, Sendai, Japan, from 25th to 28th May, 2015.

    Statistical Data Modeling and Machine Learning with Applications

    Get PDF
    The modeling and processing of empirical data is one of the main subjects and goals of statistics. Nowadays, with the development of computer science, the extraction of useful and often hidden information and patterns from data sets of different volumes and complex data sets in warehouses has been added to these goals. New and powerful statistical techniques with machine learning (ML) and data mining paradigms have been developed. To one degree or another, all of these techniques and algorithms originate from a rigorous mathematical basis, including probability theory and mathematical statistics, operational research, mathematical analysis, numerical methods, etc. Popular ML methods, such as artificial neural networks (ANN), support vector machines (SVM), decision trees, random forest (RF), among others, have generated models that can be considered as straightforward applications of optimization theory and statistical estimation. The wide arsenal of classical statistical approaches combined with powerful ML techniques allows many challenging and practical problems to be solved. This Special Issue belongs to the section “Mathematics and Computer Science”. Its aim is to establish a brief collection of carefully selected papers presenting new and original methods, data analyses, case studies, comparative studies, and other research on the topic of statistical data modeling and ML as well as their applications. Particular attention is given, but is not limited, to theories and applications in diverse areas such as computer science, medicine, engineering, banking, education, sociology, economics, among others. The resulting palette of methods, algorithms, and applications for statistical modeling and ML presented in this Special Issue is expected to contribute to the further development of research in this area. We also believe that the new knowledge acquired here as well as the applied results are attractive and useful for young scientists, doctoral students, and researchers from various scientific specialties

    Locating a bioenergy facility using a hybrid optimization method

    Get PDF
    In this paper, the optimum location of a bioenergy generation facility for district energy applications is sought. A bioenergy facility usually belongs to a wider system, therefore a holistic approach is adopted to define the location that optimizes the system-wide operational and investment costs. A hybrid optimization method is employed to overcome the limitations posed by the complexity of the optimization problem. The efficiency of the hybrid method is compared to a stochastic (genetic algorithms) and an exact optimization method (Sequential Quadratic Programming). The results confirm that the hybrid optimization method proposed is the most efficient for the specific problem. (C) 2009 Elsevier B.V. All rights reserved

    What is Computational Intelligence and where is it going?

    Get PDF
    What is Computational Intelligence (CI) and what are its relations with Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with ``computational intelligence'' in their title shows that at present it is an umbrella for three core technologies (neural, fuzzy and evolutionary), their applications, and selected fashionable pattern recognition methods. At present CI has no comprehensive foundations and is more a bag of tricks than a solid branch of science. The change of focus from methods to challenging problems is advocated, with CI defined as a part of computer and engineering sciences devoted to solution of non-algoritmizable problems. In this view AI is a part of CI focused on problems related to higher cognitive functions, while the rest of the CI community works on problems related to perception and control, or lower cognitive functions. Grand challenges on both sides of this spectrum are addressed
    corecore