135 research outputs found

    The Influence of Multi-agent Cooperation on the Efficiency of Taxi Dispatching

    Get PDF
    The paper deals with the problem of the optimal collaboration scheme in taxi dispatching between customers, taxi drivers and the dispatcher. The authors propose three strategies that differ by the amount of information exchanged between agents and the intensity of cooperation between taxi drivers and the dispatcher. The strategies are evaluated by means of a microscopic multi-agent transport simulator (MATSim) coupled with a dynamic vehicle routing optimizer (DVRP Optimizer), which allows to realistically simulate dynamic taxi services as one of several different transport means, all embedded into a realistic environment. The evaluation is carried out on a scenario of the Polish city of Mielec. The results obtained prove that the cooperation between the dispatcher and taxi drivers is of the utmost importance, while the customer–dispatcher communication may be reduced to minimum and compensated by the use of more sophisticated dispatching strategies, thereby not affecting the quality of service

    Benchmarking minimum passenger waiting time in online taxi dispatching with exact offline optimization methods

    Get PDF
    This paper analyses the use of exact offline optimization methods for benchmarking online taxi dispatching strategies where the objective is to minimize the total passenger waiting time. First, a general framework for simulating dynamic transport services in MATSim (Multi-Agent Transport Simulation) is described. Next, the model of online taxi dispatching is defined, followed by a formulation of the offline problem as a mixed integer programming problem. Three benchmarks based on the offline problem are presented and compared to two simple heuristic strategies and a hypothetical simulation with teleportation of idle taxis. The benchmarks are evaluated and compared using the simulation scenario of taxi services in the city of Mielec. The obtained (approximate) lower and upper bounds for the minimum total passenger waiting time indicate directions for further research

    Large-scale microscopic simulation of taxi services. Berlin and Barcelona case studies

    Get PDF
    The paper presents research on large-scale microscopic simulation of taxi services in Berlin and Barcelona based on floating car data collected by local taxi fleets. Firstly, Berlin’s and Barcelona’s taxi markets are shortly described and the demand and supply data obtained from FCD analysed. Secondly, the online taxi dispatching problem formulation for this specific case is given, followed by the definition of two real-time rule-based heuristics used to dispatch taxis dynamically within the simulation. Finally, the simulation setup in MATSim is described, and the results obtained with both heuristics are analysed and compared in terms of dispatching performance, proving the effectiveness of the second strategy at different demand and supply scales. This paper is an extended version of Maciejewski and Bischoff 2015, where only the Berlin case study was presented

    A Microscopic Simulation Approach for Optimization of Taxi Services

    Get PDF
    This paper presents a simulation platform along with several on-line dispatching algorithms developed in order to optimize taxi services. First, the issue of simulation-based optimization of modern transport services, especially taxi services, is presented. Next, the proposed approach to microscopically simulate taxi services is explained, followed by a description of the on-line taxi dispatching algorithm framework and three selected dispatching strategies implemented within this framework. The next section presents the simulation scenario of Mielec that the strategies were tested on. Then, the simulation results obtained are analysed and the strategies compared. The paper ends with conclusions on the main properties and other possible applications of the proposed simulation approach, as well as on future plans concerning further improvements of the taxi dispatching algorithms

    CoRide: Joint Order Dispatching and Fleet Management for Multi-Scale Ride-Hailing Platforms

    Get PDF
    How to optimally dispatch orders to vehicles and how to tradeoff between immediate and future returns are fundamental questions for a typical ride-hailing platform. We model ride-hailing as a large-scale parallel ranking problem and study the joint decision-making task of order dispatching and fleet management in online ride-hailing platforms. This task brings unique challenges in the following four aspects. First, to facilitate a huge number of vehicles to act and learn efficiently and robustly, we treat each region cell as an agent and build a multi-agent reinforcement learning framework. Second, to coordinate the agents from different regions to achieve long-term benefits, we leverage the geographical hierarchy of the region grids to perform hierarchical reinforcement learning. Third, to deal with the heterogeneous and variant action space for joint order dispatching and fleet management, we design the action as the ranking weight vector to rank and select the specific order or the fleet management destination in a unified formulation. Fourth, to achieve the multi-scale ride-hailing platform, we conduct the decision-making process in a hierarchical way where a multi-head attention mechanism is utilized to incorporate the impacts of neighbor agents and capture the key agent in each scale. The whole novel framework is named as CoRide. Extensive experiments based on multiple cities real-world data as well as analytic synthetic data demonstrate that CoRide provides superior performance in terms of platform revenue and user experience in the task of city-wide hybrid order dispatching and fleet management over strong baselines.Comment: CIKM 201
    • …
    corecore