419 research outputs found

    Artificial Neural Network for Cooperative Distributed Environments

    Get PDF

    Strategic Roadmaps and Implementation Actions for ICT in Construction

    Get PDF

    Designing for the Cooperative Use of Multi-user, Multi-device Museum Exhibits.

    Full text link
    This work explores software-based museum exhibits that allow groups of visitors to employ their own personal mobile devices as impromptu user interfaces to the exhibits. Personal devices commandeered into service in this fashion are dubbed Opportunistic User Interfaces (O-UIs). Because visitors usually prefer to engage in shared learning experiences, emphasis is placed on how to design software interfaces to support collaborative learning. To study the issue, a Design-Based Research approach was taken to construct an externally valid exemplar of this type of exhibit, while also conducting more traditional experiments on specific features of the O-UI design. Three analyses, of – (1) museums as a context, (2) existing computer-based museum exhibits, and (3) computer support of collaborative processes in both work and classroom contexts – produced guidelines that informed the design of the software-based exhibit created as a testbed for O-UI design. The exhibit was refined via extensive formative testing on a museum floor. The experimental phase of this work examined the impact of O-UI design on (1) the visual attention and (2) collaborative learning behaviors of visitors. Specifically, an O-UI design that did not display any graphical output (the “simple” condition) was contrasted against an O-UI design that displayed multi-element, dynamically animated graphics (the “complex” condition). The “complex” O-UIs promoted poor visual attention management, an effect known as the heads-down phenomenon, wherein visitors get so enmeshed with their O-UIs that they miss out on the shared context, to the detriment of group outcomes. Despite this shortcoming, the “complex” O-UIs better promoted goal awareness, on-task interactions between visitors, and equity in participation and performance. The tight output coupling (visitors see only one shared display) of the “simple” O-UI condition promoted emergent competition, and it encouraged some visitors (especially males) to become more engaged than others. Two design recommendations emerge: (1) incorporating devices with private displays (O-UIs with output) as interfaces to a single large display better promotes collaboration (especially equity), and (2) O-UIs with “complex” displays may be used in museum exhibits, but visitors would benefit from mechanisms to encourage them to direct their attention to the shared display periodically.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/61771/1/ltoth_1.pd

    A Taxonomy of workgroup Computing Applications

    Get PDF
    The goal of workgroup computing is to help individuals and groups efficiently perform a wide range of functions on networked computer systems (Ellis, Gibbs, & Rein, 1991). Early workgroup computing tools were designed for limited functionality and group interaction (Craighill, 1992). Current workgroup computing applications do not allow enough control of group processes and they provide little correlation between various workgroup computing application areas (Rodden and Blair, 1991). An integrated common architecture may produce more effective workgroup computing applications. Integrating common support functions into a common framework will avoid duplication of these functions for each workgroup computing application (Pastor & Jager, 1992). Over 50 research and commercial workgroup computing applications were analyzed to understand and discover their distinctive characteristics and fundamental structure. Using the specified methods, a detailed section of a workgroup computing taxonomy was synthesized for each of 11 workgroup computing functional areas. The detailed taxonomy was the consolidation of all the hierarchical structures. The taxonomy formed the basis for developing an integrated workgroup computing architecture and a set of workgroup computing Application Programming Interface (API) specifications. The results of this study support the hypothesis that the available workgroup computing literature and application documentation would provide sufficient information to develop a comprehensive workgroup computing taxonomy. By comparing workgroup tasks with workgroup computing functional areas, it was possible to derive a common set of workgroup computing management and support tasks that were based on the detailed workgroup computing taxonomy. Common workgroup computing management and support tasks formed the basis for a1! Integrated workgroup computing architecture. Finally, 86 new API specifications were written for common workgroup computing management and support functions. This study can be used by workgroup application developers to determine which common workgroup computing functions should be integrated into future workgroup applications. Implementing the results of this study in future workgroup computing systems will lead to flexible and integrated systems that are easier to use and more transparent to workgroup members. Workgroup computing researchers can use this study to identify workgroup computing functions that should be included in their research areas

    A virtual-community-centric model for coordination in the South African public sector

    Get PDF
    Organizations face challenges constantly owing to limited resources. As such, to take advantage of new opportunities and to mitigate possible risks they look for new ways to collaborate, by sharing knowledge and competencies. Coordination among partners is critical in order to achieve success. The segmented South African public sector is no different. Driven by the desire to ensure proper service delivery in this sector, various government bodies and service providers play different roles towards the attainment of common goals. This is easier said than done, given the complexity of the distributed nature of the environment. Heterogeneity, autonomy, and the increasing need to collaborate provoke the need to develop an integrative and dynamic coordination support service system in the SA public sector. Thus, the research looks to theories/concepts and existing coordination practices to ground the process of development. To inform the design of the proposed artefact the research employs an interdisciplinary approach championed by coordination theory to review coordination-related theories and concepts. The effort accounts for coordination constructs that characterize and transform the problem and solution spaces. Thus, requirements are explicit towards identifying coordination breakdowns and their resolution. Furthermore, how coordination in a distributed environment is supported in practice is considered from a socio-technical perspective in an effort to account holistically for coordination support. Examining existing solutions identified shortcomings that, if addressed, can help to improve the solutions for coordination, which are often rigidly and narrowly defined. The research argues that introducing a mediating technological artefact conceived from a virtual community and service lenses can serve as a solution to the problem. By adopting a design-science research paradigm, the research develops a model as a primary artefact to support coordination from a collaboration standpoint. The suggestions from theory and practice and the unique case requirement identified through a novel case analysis framework form the basis of the model design. The proposed model support operation calls for an architecture which employs a design pattern that divides a complex whole into smaller, simpler parts, with the aim of reducing the system complexity. Four fundamental functions of the supporting architecture are introduced and discussed as they would support the operation and activities of the proposed collaboration lifecycle model geared towards streamlining coordination in a distributed environment. As part of the model development knowledge contributions are made in several ways. Firstly, an analytical instrument is presented that can be used by an enterprise architect or business analyst to study the coordination status quo of a collaborative activity in a distributed environment. Secondly, a lifecycle model is presented as meta-process model with activities that are geared towards streamlining the coordination of dynamic collaborative activities or projects. Thirdly, an architecture that will enable the technical virtual community-centric, context-aware environment that hosts the process-based operations is offered. Finally, the validation tool that represents the applied contribution to the research that promises possible adaptation for similar circumstances is presented. The artefacts contribute towards a design theory in IS research for the development and improvement of coordination support services in a distributed environment such as the South African public sector

    A Web-Based Collaborative Multimedia Presentation Document System

    Get PDF
    With the distributed and rapidly increasing volume of data and expeditious development of modern web browsers, web browsers have become a possible legitimate vehicle for remote interactive multimedia presentation and collaboration, especially for geographically dispersed teams. To our knowledge, although there are a large number of applications developed for these purposes, there are some drawbacks in prior work including the lack of interactive controls of presentation flows, general-purpose collaboration support on multimedia, and efficient and precise replay of presentations. To fill the research gaps in prior work, in this dissertation, we propose a web-based multimedia collaborative presentation document system, which models a presentation as media resources together with a stream of media events, attached to associated media objects. It represents presentation flows and collaboration actions in events, implements temporal and spatial scheduling on multimedia objects, and supports real-time interactive control of the predefined schedules. As all events are represented by simple messages with an object-prioritized approach, our platform can also support fine-grained precise replay of presentations. Hundreds of kilobytes could be enough to store the events in a collaborative presentation session for accurate replays, compared with hundreds of megabytes in screen recording tools with a pixel-based replay mechanism

    Innovative Technologies and Services for Smart Cities

    Get PDF
    A smart city is a modern technology-driven urban area which uses sensing devices, information, and communication technology connected to the internet of things (IoTs) for the optimum and efficient utilization of infrastructures and services with the goal of improving the living conditions of citizens. Increasing populations, lower budgets, limited resources, and compatibility of the upgraded technologies are some of the few problems affecting the implementation of smart cities. Hence, there is continuous advancement regarding technologies for the implementation of smart cities. The aim of this Special Issue is to report on the design and development of integrated/smart sensors, a universal interfacing platform, along with the IoT framework, extending it to next-generation communication networks for monitoring parameters of interest with the goal of achieving smart cities. The proposed universal interfacing platform with the IoT framework will solve many challenging issues and significantly boost the growth of IoT-related applications, not just in the environmental monitoring domain but in the other key areas, such as smart home, assistive technology for the elderly care, smart city with smart waste management, smart E-metering, smart water supply, intelligent traffic control, smart grid, remote healthcare applications, etc., signifying benefits for all countries
    corecore