3,170 research outputs found

    A collaborative 3D environment for authoring design semantics

    Full text link

    CONSTRUCTION EDUCATION REQUIREMENTS FOR ACHIEVING LEVEL 2 AND 3 BIM

    Get PDF
    The Architecture Engineering Construction (AEC) Industry is well noted for its fragmented nature, leading to several flaws in communication and information processing, which have led to a proliferation of adversarial relationships amongst project participants, thereby affecting the integrity of design information throughout the project life cycle. Likewise, Construction Education is bedevilled by multitudinous issues due to its practice-based, interdisciplinary nature of the industry, its professional and institutional history, and its evolving context and composition. These challenges have influenced the purpose of construction as well as the requirements or strategies needed to achieve it. The purpose of this paper is to examine the nature of Construction Education and learning requirements for successful training and implementation of Level 2 (with the aid of a process map) and also of Level 3, to meeting the ever-changing nature of the AEC industry. This process map seeks to identify the educational requirements for existing industry practitioners and for fresh graduates entering into the industry. In order to achieve this aim, a case study methodology was adopted using semi-structured interviews with BIM experts in purposively selected organisations in the UK, which were further analysed using single case narrative and cross-case synthesis techniques. The BIM sub-processes at each project phase of the construction process were extracted from the interviews conducted. Then the process map linking all the BIM activities in the project was developed. In conclusion, the process map formalises the knowledge and skills set required to successfully implement Level 2 and 3 BIM, facilitating project collaboration, communication flow and agreement amongst project participants on construction processes throughout the project lifecycle. The finding of this research are highly aligned with the seminal literature which argued that new skills required for the creation and management of a BIM model fall into the three categories of technological tools, organisational processes, and project team roles and responsibilities, and that these three skill sets contribute to the success of the entire BIM project and adoption in any organisation

    Design and evaluation of a choreography-based virtual reality authoring tool for experiential learning in industrial training

    Get PDF
    The use of virtual reality (VR) for industrial training helps minimize risks and costs by allowing more frequent and varied use of experiential learning activities, leading to active and improved learning. However, creating VR training experiences is costly and time-consuming, requiring software development experts. Additionally, current authoring tools lack integration with existing data and are desktop-oriented, which detach the pedagogic process of creating the immersive experience from experiencing it in a situated context. In this article, we present a novel interactive approach for immersive authoring of VR-based experiential training by the trainers themselves, from inside the virtual environment and without the support of development experts. The design includes identifying interactable elements, such as 3-D models, equipment, tools, settings, and environment. The trainer also specifies by demonstration the actions to be performed by trainees, as a virtual choreography. During course execution, trainees’ activities are also registered as virtual choreographies and matched to those specified by the trainer. Thus, trainer and trainee are culturally situated within their area semantics and social discourse, rather than adopting concepts of the VR system for the learning content. We conducted a usability case study with professionals from an international wind energy company, using detailed models of wind turbines and real-world procedures. Trainers set up a training course using the immersive authoring tool, and trainees executed the course. The learning experience and usability were analyzed, and the training was certified by comparing real-world task completion between a user who had undergone virtual training and a user who did not.Manuscript received 25 June 2021; revised 30 November 2021 and 18 February 2022; accepted 2 March 2022. Date of publication 7 March 2022; date of current version 21 October 2022. This work was supported in part by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 under the Portugal 2020 Partnership Agreement, in part by the Portuguese National Innovation Agency (ANI) under Project POCI-01-0247-FEDER038524, and in part by Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, under Project UIDB/50014/2020. An earlier version of this paper was presented in part at the 2021 IEEE Conference on Virtual Reality and 3D UserInterfaces[DOI: 10.1109/VRW52623.2021.00199].(Corresponding author: Fernando Cassola.) Fernando Cassola, Daniel Mendes, and Ant onio Coelho are with the INESC TEC, and Faculty of Engineering, University of Porto, 4099-002 Porto, Portugal (e-mail: [email protected]; [email protected]; [email protected]). Manuel Pinto and Hugo Paredes are with the INESC TEC and University of Tras-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal (e-mail: [email protected]; [email protected]). Leonel Morgado is with the INESC TEC and Universidade Aberta, 1250-100 Lisboa, Portugal (e-mail: [email protected]). Sara Costa, Luıs Anjos, David Marques, Filipe Rosa, Ana Maia, and Helga Tavares are with the Vestas Wind Systems, 2670-327 Loures, Portugal (email: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]). Digital Object Identifier 10.1109/TLT.2022.3157065info:eu-repo/semantics/publishedVersio

    Some Research Questions and Results of UC3M in the E-Madrid Excellence Network

    Get PDF
    32 slides.-- Contributed to: 2010 IEEE Global Engineering Education Conference (EDUCON), Madrid, Spain, 14-16 April, 2010.-- Presented by C. Delgado Kloos.Proceedings of: 2010 IEEE Global Engineering Education Conference (EDUCON), Madrid, Spain, 14-16 April, 2010Universidad Carlos III de Madrid is one of the six main participating institutions in the eMadrid excellence network, as well as its coordinating partner. In this paper, the network is presented together with some of the main research lines carried out by UC3M. The remaining papers in this session present the work carried out by the other five universities in the consortium.The Excellence Network eMadrid, “Investigación y Desarrollo de Tecnologías para el e-Learning en la Comunidad de Madrid” is being funded by the Madrid Regional Government under grant No. S2009/TIC-1650. In addition, we acknowledge funding from the following research projects: iCoper: “Interoperable Content for Performance in a Competency-driven Society” (eContentPlus Best Practice Network No. ECP-2007-EDU-417007), Learn3: Hacia el Aprendizaje en la 3ª Fase (“Plan Nacional de I+D+I” TIN2008-05163/ TSI), Flexo: “Desarrollo de aprendizaje adaptativo y accesible en sistemas de código abierto” (AVANZA I+D, TSI-020301- 2008-19), España Virtual (CDTI, Ingenio 2010, CENIT, Deimos Space), SOLITE (CYTED 508AC0341), and “Integración vertical de servicios telemáticos de apoyo al aprendizaje en entornos residenciales” (Programa de creación y consolidación de grupos de investigación de la Universidad Carlos III de Madrid).Publicad

    Information in construction

    Get PDF

    Archaeological Building Information Modeling: beyond scalable representation of architecture and archaeology

    Get PDF
    The widespread use of technologies and processes aimed at information management is one of the main trends in today’s building industry. Collaboration, coordination and validation of design results are fostered by software and workflows that involve many disciplines. Taking into account these premises, this paper deals with the application of such a paradigm to the archaeological and architectural fields. The application to the particular case study of the Etruscan town of Kainua aspires to be exemplary, since it is referred to different metric scales, from the building to the urban settlement. The digital reconstruction of the whole town, which can be explored and studied by means of Virtual Reality, was validated from a philological point of view using an original interdisciplinary approach called ArchaeoBIM, i.e. a methodology that encompasses the information flow among different disciplines with the same interest in understanding, and virtually reconstructing, lost realities. Using this method, architectural proportions brought by existing literature, physical behaviours of materials and components, layouts of rooms and spaces regulated by rituals or historic traditions are collected in a model that is able to represent morphologies, analysis and functions. This model, basically a geometric database linking heterogeneous documents, can be used in many different ways, from analytic abstractions to static simulations, from solar analysis to visual renderings. It becomes a common language for information exchange among scholars and users interested in the dissemination and study of the cultural heritage

    Information in construction

    Get PDF

    Visualisation of semantic architectural information within a game engine environment

    Get PDF
    Because of the importance of graphics and information within the domain of architecture, engineering and construction (AEC), an appropriate combination of visualisation technology and information management technology is of utter importance in the development of appropriately supporting design and construction applications. We therefore started an investigation of two of the newest developments in these domains, namely game engine technology and semantic web technology. This paper documents part of this research, containing a review and comparison of the most prominent game engines and documenting our architectural semantic web. A short test-case illustrates how both can be combined to enhance information visualisation for architectural design and construction
    corecore