75 research outputs found

    The Lambek calculus with iteration: two variants

    Full text link
    Formulae of the Lambek calculus are constructed using three binary connectives, multiplication and two divisions. We extend it using a unary connective, positive Kleene iteration. For this new operation, following its natural interpretation, we present two lines of calculi. The first one is a fragment of infinitary action logic and includes an omega-rule for introducing iteration to the antecedent. We also consider a version with infinite (but finitely branching) derivations and prove equivalence of these two versions. In Kleene algebras, this line of calculi corresponds to the *-continuous case. For the second line, we restrict our infinite derivations to cyclic (regular) ones. We show that this system is equivalent to a variant of action logic that corresponds to general residuated Kleene algebras, not necessarily *-continuous. Finally, we show that, in contrast with the case without division operations (considered by Kozen), the first system is strictly stronger than the second one. To prove this, we use a complexity argument. Namely, we show, using methods of Buszkowski and Palka, that the first system is Π10\Pi_1^0-hard, and therefore is not recursively enumerable and cannot be described by a calculus with finite derivations

    On the logical structure of choice and bar induction principles

    Get PDF
    We develop an approach to choice principles and their contrapositive bar-induction principles as extensionality schemes connecting an "intensional" or "effective" view of respectively ill-and well-foundedness properties to an "extensional" or "ideal" view of these properties. After classifying and analysing the relations between different intensional definitions of ill-foundedness and well-foundedness, we introduce, for a domain AA, a codomain BB and a "filter" TT on finite approximations of functions from AA to BB, a generalised form GDCA,B,T_{A,B,T} of the axiom of dependent choice and dually a generalised bar induction principle GBIA,B,T_{A,B,T} such that: GDCA,B,T_{A,B,T} intuitionistically captures the strength of ∙\bullet the general axiom of choice expressed as ∀a∃bR(a,b)⇒∃α∀αR(α,α(a))\forall a\exists b R(a, b) \Rightarrow\exists\alpha\forall \alpha R(\alpha,\alpha(a)) when TT is a filter that derives point-wise from a relation RR on A×BA \times B without introducing further constraints, ∙\bullet the Boolean Prime Filter Theorem / Ultrafilter Theorem if BB is the two-element set B\mathbb{B} (for a constructive definition of prime filter), ∙\bullet the axiom of dependent choice if A=NA = \mathbb{N}, ∙\bullet Weak K{\"o}nig's Lemma if A=NA = \mathbb{N} and B=BB = \mathbb{B} (up to weak classical reasoning) GBIA,B,T_{A,B,T} intuitionistically captures the strength of ∙\bullet G{\"o}del's completeness theorem in the form validity implies provability for entailment relations if B=BB = \mathbb{B}, ∙\bullet bar induction when A=NA = \mathbb{N}, ∙\bullet the Weak Fan Theorem when A=NA = \mathbb{N} and B=BB = \mathbb{B}. Contrastingly, even though GDCA,B,T_{A,B,T} and GBIA,B,T_{A,B,T} smoothly capture several variants of choice and bar induction, some instances are inconsistent, e.g. when AA is BN\mathbb{B}^\mathbb{N} and BB is N\mathbb{N}.Comment: LICS 2021 - 36th Annual Symposium on Logic in Computer Science, Jun 2021, Rome / Virtual, Ital

    Productive Corecursion in Logic Programming

    Get PDF
    Logic Programming is a Turing complete language. As a consequence, designing algorithms that decide termination and non-termination of programs or decide inductive/coinductive soundness of formulae is a challenging task. For example, the existing state-of-the-art algorithms can only semi-decide coinductive soundness of queries in logic programming for regular formulae. Another, less famous, but equally fundamental and important undecidable property is productivity. If a derivation is infinite and coinductively sound, we may ask whether the computed answer it determines actually computes an infinite formula. If it does, the infinite computation is productive. This intuition was first expressed under the name of computations at infinity in the 80s. In modern days of the Internet and stream processing, its importance lies in connection to infinite data structure processing. Recently, an algorithm was presented that semi-decides a weaker property -- of productivity of logic programs. A logic program is productive if it can give rise to productive derivations. In this paper we strengthen these recent results. We propose a method that semi-decides productivity of individual derivations for regular formulae. Thus we at last give an algorithmic counterpart to the notion of productivity of derivations in logic programming. This is the first algorithmic solution to the problem since it was raised more than 30 years ago. We also present an implementation of this algorithm.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017 16 pages, LaTeX, no figure

    Psi-calculi in Isabelle

    Get PDF

    PSPACE Bounds for Rank-1 Modal Logics

    Get PDF
    For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way

    Soundness and completeness proofs by coinductive methods

    Get PDF
    We show how codatatypes can be employed to produce compact, high-level proofs of key results in logic: the soundness and completeness of proof systems for variations of first-order logic. For the classical completeness result, we first establish an abstract property of possibly infinite derivation trees. The abstract proof can be instantiated for a wide range of Gentzen and tableau systems for various flavors of first-order logic. Soundness becomes interesting as soon as one allows infinite proofs of first-order formulas. This forms the subject of several cyclic proof systems for first-order logic augmented with inductive predicate definitions studied in the literature. All the discussed results are formalized using Isabelle/HOL’s recently introduced support for codatatypes and corecursion. The development illustrates some unique features of Isabelle/HOL’s new coinductive specification language such as nesting through non-free types and mixed recursion–corecursion

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    Soundness and completeness proofs by coinductive methods

    Get PDF
    We show how codatatypes can be employed to produce compact, high-level proofs of key results in logic: the soundness and completeness of proof systems for variations of first-order logic. For the classical completeness result, we first establish an abstract property of possibly infinite derivation trees. The abstract proof can be instantiated for a wide range of Gentzen and tableau systems for various flavors of first-order logic. Soundness becomes interesting as soon as one allows infinite proofs of first-order formulas. This forms the subject of several cyclic proof systems for first-order logic augmented with inductive predicate definitions studied in the literature. All the discussed results are formalized using Isabelle/HOL’s recently introduced support for codatatypes and corecursion. The development illustrates some unique features of Isabelle/HOL’s new coinductive specification language such as nesting through non-free types and mixed recursion–corecursion
    • …
    corecore