1,100 research outputs found

    Review of Clustering Methods for Slow Coherency-Based Generator Grouping

    Get PDF
    Slow coherency is one of the most relevant concepts used in power systems dynamics to group generators that exhibit similar response to disturbances. Among the approaches developed for generator grouping based on slow coherency, clustering algorithms play a significant role. This paper reviews the clustering algorithms applied in model-based and data-driven approaches, highlighting the metrics used, the feature selection, the types of algorithms and the comparison among the results obtained considering simulated or measured data

    Improved Step Response of Power System Stabilizer using Fuzzy Logic Controller

    Get PDF
    As every power system is constantly being subjected to disturbances, we should see that these disturbances do not make the system unstable. Therefor additional signals derived from speed deviation, excitation deviation and accelerating power are injected into voltage regulators. The device to provide these signals is referred as power system stabilizer. The use of power system stabilizers has become very common in operation of large electric power systems. The conventional PSS which uses lead-lag compensation, where gain settings designed for specific operating conditions, is giving poor performance under different loading conditions. Therefore, it is very difficult to design a stabilizer that could present good performance in all operating points of electric power systems. In an attempt to cover a wide range of operating conditions, Fuzzy logic control has been suggested as a possible solution to overcome this problem. In this paper, a systematic approach to fuzzy logic control design is proposed. The study of fuzzy logic power system stabilizer for stability enhancement of a single machine infinite bus system is presented. In order to accomplish the stability enhancement, speed deviation and acceleration of the rotor synchronous generator are taken as the inputs to the fuzzy logic controller. These variables take significant effects on damping the generator shaft mechanical oscillations. The stabilizing signals were computed using the fuzzy membership function depending on these variables. The performance of the system with fuzzy logic based power system stabilizer is compared with the system having conventional power system stabilizer and system without power system stabilize

    Wide Area Signals Based Damping Controllers for Multimachine Power Systems

    Get PDF
    Nowadays, electric power systems are stressed and pushed toward their stability margins due to increasing load demand and growing penetration levels of renewable energy sources such as wind and solar power. Due to insufficient damping in power systems, oscillations are likely to arise during transient and dynamic conditions. To avoid undesirable power system states such as tripping of transmission lines, generation sources, and loads, eventually leading to cascaded outages and blackouts, intelligent coordinated control of a power system and its elements, from a global and local perspective, is needed. The research performed in this dissertation is focused on intelligent analysis and coordinated control of a power system to damp oscillations and improve its stability. Wide area signals based coordinated control of power systems with and without a wind farm and energy storage systems is investigated. A data-driven method for power system identification is developed to obtain system matrices that can aid in the design of local and wide area signals based power system stabilizers. Modal analysis is performed to characterize oscillation modes using data-driven models. Data-driven models are used to identify the most appropriate wide-area signals to utilize as inputs to damping controller(s) and generator(s) to receive supplementary control. Virtual Generators (VGs) are developed using the phenomena of generator coherency to effectively and efficiently control power system oscillations. VG based Power System Stabilizers (VG-PSSs) are proposed for optimal damping of power system oscillations. Herein, speed deviation of VGs is used to generate a supplementary coordinated control signal for an identified generator(s) of maximum controllability. The parameters of a VG-PSS(s) are heuristically tuned to provide maximum system damping. To overcome fallouts and switching in coherent generator groups during transients, an adaptive inter-area oscillation damping controller is developed using the concept of artificial immune systems - innate and adaptive immunity. With increasing levels of electric vehicles (EVs) on the road, the potential of SmartParks (a large number of EVs in parking lots) for improving power system stability is investigated. Intelligent multi-functional control of SmartParks using fuzzy logic based controllers are investigated for damping power system oscillations, regulating transmission line power flows and bus voltages. In summary, a number of approaches and suggestions for improving modern power system stability have been presented in this dissertation

    Sparsity-Promoting Optimal Wide-Area Control of Power Networks

    Full text link
    • …
    corecore