887 research outputs found

    Novel evaluation framework for sensing spread spectrum in cognitive radio

    Get PDF
    The cognitive radio network is designed to cater to the optimization demands of restricted spectrum availability. A review of existing literature on spectrum sensing shows that there is still a broader scope for its improvement. Therefore, this paper introduces an efficient computational framework capable of evaluating the effectiveness of the spread spectrum concept in the context of cognitive radio network in a more scalable and granular way. The proposed method introduces a dual hypothesis using a different set of dependable parameters to emphasize the detection of optimal energy for a low signal quality state over the noise. The proposed evaluation framework is benchmarked using a statistical analysis method not present in any existing approaches toward spread spectrum sensing. The simulated outcome of the study exhibits that the proposed system offers a significantly better probability of detection than the current system using a simplified evaluation scheme with multiple test parameters

    An Opportunistic Error Correction Layer for OFDM Systems

    Get PDF
    In this paper, we propose a novel cross layer scheme to lower power\ud consumption of ADCs in OFDM systems, which is based on resolution\ud adaptive ADCs and Fountain codes. The key part in the new proposed\ud system is that the dynamic range of ADCs can be reduced by\ud discarding the packets which are transmitted over 'bad' sub\ud carriers. Correspondingly, the power consumption in ADCs can be\ud reduced. Also, the new system does not process all the packets but\ud only processes surviving packets. This new error correction layer\ud does not require perfect channel knowledge, so it can be used in a\ud realistic system where the channel is estimated. With this new\ud approach, more than 70% of the energy consumption in the ADC can be\ud saved compared with the conventional IEEE 802.11a WLAN system under\ud the same channel conditions and throughput. The ADC in a receiver\ud can consume up to 50% of the total baseband energy. Moreover, to\ud reduce the overhead of Fountain codes, we apply message passing and\ud Gaussian elimination in the decoder. In this way, the overhead is\ud 3% for a small block size (i.e. 500 packets). Using both methods\ud results in an efficient system with low delay

    An Emergent Self-Awareness Module for Physical Layer Security in Cognitive UAV Radios

    Get PDF
    In this paper, we propose to introduce an emergent Self-Awareness (SA) module at the physical layer (PHY) in Cognitive Unmanned Aerial Vehicle (UAV) Radios to improve PHY security, especially against jamming attacks. SA is based on learning a hierarchical representation of the radio environment by means of a proposed Hierarchical Dynamic Bayesian Network (HDBN). It is shown how the acquired knowledge from previous experiences facilitate the radio spectrum perception and allow the radio to detect abnormal behaviours caused by jamming attacks. Detecting abnormalities realize a fundamental step towards growing up incrementally the radio\u2019s long-term memory. Deviations from predictions estimated during abnormal situations are used to characterize jammers at multiple levels and discover their dynamic behavioural rules. Besides, a proactive consequence can be drawn after estimating the jammer\u2019s signal to act efficiently by mitigating its effects on the received stimuli. Simulation results show that the introduction of the novel SA functionalities with the proposed HDBN framework provides the high accuracy of characterizing, detecting and predicting the jammer\u2019s activities

    Data-Driven Approach based on Deep Learning and Probabilistic Models for PHY-Layer Security in AI-enabled Cognitive Radio IoT.

    Get PDF
    PhD Theses.Cognitive Radio Internet of Things (CR-IoT) has revolutionized almost every eld of life and reshaped the technological world. Several tiny devices are seamlessly connected in a CR-IoT network to perform various tasks in many applications. Nevertheless, CR-IoT su ers from malicious attacks that pulverize communication and perturb network performance. Therefore, recently it is envisaged to introduce higher-level Arti cial Intelligence (AI) by incorporating Self-Awareness (SA) capabilities into CR-IoT objects to facilitate CR-IoT networks to establish secure transmission against vicious attacks autonomously. In this context, sub-band information from the Orthogonal Frequency Division Multiplexing (OFDM) modulated transmission in the spectrum has been extracted from the radio device receiver terminal, and a generalized state vector (GS) is formed containing low dimension in-phase and quadrature components. Accordingly, a probabilistic method based on learning a switching Dynamic Bayesian Network (DBN) from OFDM transmission with no abnormalities has been proposed to statistically model signal behaviors inside the CR-IoT spectrum. A Bayesian lter, Markov Jump Particle Filter (MJPF), is implemented to perform state estimation and capture malicious attacks. Subsequently, GS containing a higher number of subcarriers has been investigated. In this connection, Variational autoencoders (VAE) is used as a deep learning technique to extract features from high dimension radio signals into low dimension latent space z, and DBN is learned based on GS containing latent space data. Afterward, to perform state estimation and capture abnormalities in a spectrum, Adapted-Markov Jump Particle Filter (A-MJPF) is deployed. The proposed method can capture anomaly that appears due to either jammer attacks in transmission or cognitive devices in a network experiencing di erent transmission sources that have not been observed previously. The performance is assessed using the receiver
    corecore