107,383 research outputs found

    CogCell: Cognitive Interplay between 60GHz Picocells and 2.4/5GHz Hotspots in the 5G Era

    Full text link
    Rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e., 5G. Legacy 2G--4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G-era, 80\% of overall traffic is expected to be generated in indoors. Hence, the current approach of macro-cell mobile network, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60\,GHz mmWave picocell architecture to support high-speed indoor and hotspot communications. We envisage the 5G indoor network as a combination of-, and interplay between, 2.4/5\,GHz having robust coverage and 60\,GHz links offering high datarate. This requires an intelligent coordination and cooperation. We propose 60\,GHz picocellular network architecture, called CogCell, leveraging the ubiquitous WiFi. We propose to use 60\,GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5\,GHz in case of poor connectivity in the 60\,GHz domain. Further, to avoid the frequent re-beamforming in 60\,GHz directional links due to mobility, we propose a cognitive module -- a sensor-assisted intelligent beam switching procedure -- which reduces the communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience.Comment: 14 PAGES in IEEE Communications Magazine, Special issue on Emerging Applications, Services and Engineering for Cognitive Cellular Systems (EASE4CCS), July 201

    Learning-Based Routing in Cognitive Networks

    Get PDF
    Intelligent Routing can influence the overall performance of a communication network’s throughput and efficiency. Routing strategies is required to adapt to changing network loads and different topologies. Learning from the network environment, in order to optimally adapt the network settings, is an essential requirement for providing efficient communication services in such environments. Cognitive networks are capable of learning and reasoning. They can energetically adapt to varying network conditions in order to optimize end-to-end performance and utilize network resources. In this paper we will focus machine learning in routing scheme that includes routing awareness, a routing reconfiguration

    Autonomous cognitive systems in real-world environments: Less control, more flexibility and better interaction

    Get PDF
    In October 2011, the “2nd European Network for Cognitive Systems, Robotics and Interaction”, EUCogII, held its meeting in Groningen on “Autonomous activity in real-world environments”, organized by Tjeerd Andringa and myself. This is a brief personal report on why we thought autonomy in real-world environments is central for cognitive systems research and what I think I learned about it. --- The theses that crystallized are that a) autonomy is a relative property and a matter of degree, b) increasing autonomy of an artificial system from its makers and users is a necessary feature of increasingly intelligent systems that can deal with the real-world and c) more such autonomy means less control but at the same time improved interaction with the syste

    Intelligent Association Exploration and Exploitation of Fuzzy Agents in Ambient Intelligent Environments

    Get PDF
    This paper presents a novel fuzzy-based intelligent architecture that aims to find relevant and important associations between embedded-agent based services that form Ambient Intelligent Environments (AIEs). The embedded agents are used in two ways; first they monitor the inhabitants of the AIE, learning their behaviours in an online, non-intrusive and life-long fashion with the aim of pre-emptively setting the environment to the users preferred state. Secondly, they evaluate the relevance and significance of the associations to various services with the aim of eliminating redundant associations in order to minimize the agent computational latency within the AIE. The embedded agents employ fuzzy-logic due to its robustness to the uncertainties, noise and imprecision encountered in AIEs. We describe unique real world experiments that were conducted in the Essex intelligent Dormitory (iDorm) to evaluate and validate the significance of the proposed architecture and methods

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    • …
    corecore