12,394 research outputs found

    An Equivalence Between Secure Network and Index Coding

    Full text link
    We extend the equivalence between network coding and index coding by Effros, El Rouayheb, and Langberg to the secure communication setting in the presence of an eavesdropper. Specifically, we show that the most general versions of secure network-coding setup by Chan and Grant and the secure index-coding setup by Dau, Skachek, and Chee, which also include the randomised encoding setting, are equivalent

    On the Capacity Region for Secure Index Coding

    Full text link
    We study the index coding problem in the presence of an eavesdropper, where the aim is to communicate without allowing the eavesdropper to learn any single message aside from the messages it may already know as side information. We establish an outer bound on the underlying secure capacity region of the index coding problem, which includes polymatroidal and security constraints, as well as the set of additional decoding constraints for legitimate receivers. We then propose a secure variant of the composite coding scheme, which yields an inner bound on the secure capacity region of the index coding problem. For the achievability of secure composite coding, a secret key with vanishingly small rate may be needed to ensure that each legitimate receiver who wants the same message as the eavesdropper, knows at least two more messages than the eavesdropper. For all securely feasible index coding problems with four or fewer messages, our numerical results establish the secure index coding capacity region

    Perfectly Secure Index Coding

    Full text link
    In this paper, we investigate the index coding problem in the presence of an eavesdropper. Messages are to be sent from one transmitter to a number of legitimate receivers who have side information about the messages, and share a set of secret keys with the transmitter. We assume perfect secrecy, meaning that the eavesdropper should not be able to retrieve any information about the message set. We study the minimum key lengths for zero-error and perfectly secure index coding problem. On one hand, this problem is a generalization of the index coding problem (and thus a difficult one). On the other hand, it is a generalization of the Shannon's cipher system. We show that a generalization of Shannon's one-time pad strategy is optimal up to a multiplicative constant, meaning that it obtains the entire boundary of the cone formed by looking at the secure rate region from the origin. Finally, we consider relaxation of the perfect secrecy and zero-error constraints to weak secrecy and asymptotically vanishing probability of error, and provide a secure version of the result, obtained by Langberg and Effros, on the equivalence of zero-error and ϵ\epsilon-error regions in the conventional index coding problem.Comment: 25 pages, 5 figures, submitted to the IEEE Transactions on Information Theor

    Universal Secure Multiplex Network Coding with Dependent and Non-Uniform Messages

    Full text link
    We consider the random linear precoder at the source node as a secure network coding. We prove that it is strongly secure in the sense of Harada and Yamamoto and universal secure in the sense of Silva and Kschischang, while allowing arbitrary small but nonzero mutual information to the eavesdropper. Our security proof allows statistically dependent and non-uniform multiple secret messages, while all previous constructions of weakly or strongly secure network coding assumed independent and uniform messages, which are difficult to be ensured in practice.Comment: 10 pages, 1 figure, IEEEtrans.cls. Online published in IEEE Trans. Inform. Theor
    • …
    corecore