20 research outputs found

    Run-time support for parallel object-oriented computing: the NIP lazy task creation technique and the NIP object-based software distributed shared memory

    Get PDF
    PhD ThesisAdvances in hardware technologies combined with decreased costs have started a trend towards massively parallel architectures that utilise commodity components. It is thought unreasonable to expect software developers to manage the high degree of parallelism that is made available by these architectures. This thesis argues that a new programming model is essential for the development of parallel applications and presents a model which embraces the notions of object-orientation and implicit identification of parallelism. The new model allows software engineers to concentrate on development issues, using the object-oriented paradigm, whilst being freed from the burden of explicitly managing parallel activity. To support the programming model, the semantics of an execution model are defined and implemented as part of a run-time support system for object-oriented parallel applications. Details of the novel techniques from the run-time system, in the areas of lazy task creation and object-based, distributed shared memory, are presented. The tasklet construct for representing potentially parallel computation is introduced and further developed by this thesis. Three caching techniques that take advantage of memory access patterns exhibited in object-oriented applications are explored. Finally, the performance characteristics of the introduced run-time techniques are analysed through a number of benchmark applications

    Message-driven dynamics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (p. 251-260).by Richard Anton Lethin.Ph.D

    Temporal analysis and scheduling of hard real-time radios running on a multi-processor

    Get PDF
    On a multi-radio baseband system, multiple independent transceivers must share the resources of a multi-processor, while meeting each its own hard real-time requirements. Not all possible combinations of transceivers are known at compile time, so a solution must be found that either allows for independent timing analysis or relies on runtime timing analysis. This thesis proposes a design flow and software architecture that meets these challenges, while enabling features such as independent transceiver compilation and dynamic loading, and taking into account other challenges such as ease of programming, efficiency, and ease of validation. We take data flow as the basic model of computation, as it fits the application domain, and several static variants (such as Single-Rate, Multi-Rate and Cyclo-Static) have been shown to possess strong analytical properties. Traditional temporal analysis of data flow can provide minimum throughput guarantees for a self-timed implementation of data flow. Since transceivers may need to guarantee strictly periodic execution and meet latency requirements, we extend the analysis techniques to show that we can enforce strict periodicity for an actor in the graph; we also provide maximum latency analysis techniques for periodic, sporadic and bursty sources. We propose a scheduling strategy and an automatic scheduling flow that enable the simultaneous execution of multiple transceivers with hard-realtime requirements, described as Single-Rate Data Flow (SRDF) graphs. Each transceiver has its own execution rate and starts and stops independently from other transceivers, at times unknown at compile time, on a multiprocessor. We show how to combine scheduling and mapping decisions with the input application data flow graph to generate a worst-case temporal analysis graph. We propose algorithms to find a mapping per transceiver in the form of clusters of statically-ordered actors, and a budget for either a Time Division Multiplex (TDM) or Non-Preemptive Non-Blocking Round Robin (NPNBRR) scheduler per cluster per transceiver. The budget is computed such that if the platform can provide it, then the desired minimum throughput and maximum latency of the transceiver are guaranteed, while minimizing the required processing resources. We illustrate the use of these techniques to map a combination of WLAN and TDS-CDMA receivers onto a prototype Software-Defined Radio platform. The functionality of transceivers for standards with very dynamic behavior – such as WLAN – cannot be conveniently modeled as an SRDF graph, since SRDF is not capable of expressing variations of actor firing rules depending on the values of input data. Because of this, we propose a restricted, customized data flow model of computation, Mode-Controlled Data Flow (MCDF), that can capture the data-value dependent behavior of a transceiver, while allowing rigorous temporal analysis, and tight resource budgeting. We develop a number of analysis techniques to characterize the temporal behavior of MCDF graphs, in terms of maximum latencies and throughput. We also provide an extension to MCDF of our scheduling strategy for SRDF. The capabilities of MCDF are then illustrated with a WLAN 802.11a receiver model. Having computed budgets for each transceiver, we propose a way to use these budgets for run-time resource mapping and admissibility analysis. During run-time, at transceiver start time, the budget for each cluster of statically-ordered actors is allocated by a resource manager to platform resources. The resource manager enforces strict admission control, to restrict transceivers from interfering with each other’s worst-case temporal behaviors. We propose algorithms adapted from Vector Bin-Packing to enable the mapping at start time of transceivers to the multi-processor architecture, considering also the case where the processors are connected by a network on chip with resource reservation guarantees, in which case we also find routing and resource allocation on the network-on-chip. In our experiments, our resource allocation algorithms can keep 95% of the system resources occupied, while suffering from an allocation failure rate of less than 5%. An implementation of the framework was carried out on a prototype board. We present performance and memory utilization figures for this implementation, as they provide insights into the costs of adopting our approach. It turns out that the scheduling and synchronization overhead for an unoptimized implementation with no hardware support for synchronization of the framework is 16.3% of the cycle budget for a WLAN receiver on an EVP processor at 320 MHz. However, this overhead is less than 1% for mobile standards such as TDS-CDMA or LTE, which have lower rates, and thus larger cycle budgets. Considering that clock speeds will increase and that the synchronization primitives can be optimized to exploit the addressing modes available in the EVP, these results are very promising

    Hardware Support for Efficient Packet Processing

    Full text link
    Scalability is the key ingredient to further increase the performance of today’s supercomputers. As other approaches like frequency scaling reach their limits, parallelization is the only feasible way to further improve the performance. The time required for communication needs to be kept as small as possible to increase the scalability, in order to be able to further parallelize such systems. In the first part of this thesis ways to reduce the inflicted latency in packet based interconnection networks are analyzed and several new architectural solutions are proposed to solve these issues. These solutions have been tested and proven in a field programmable gate array (FPGA) environment. In addition, a hardware (HW) structure is presented that enables low latency packet processing for financial markets. The second part and the main contribution of this thesis is the newly designed crossbar architecture. It introduces a novel way to integrate the ability to multicast in a crossbar design. Furthermore, an efficient implementation of adaptive routing to reduce the congestion vulnerability in packet based interconnection networks is shown. The low latency of the design is demonstrated through simulation and its scalability is proven with synthesis results. The third part concentrates on the improvements and modifications made to EXTOLL, a high performance interconnection network specifically designed for low latency and high throughput applications. Contributions are modules enabling an efficient integration of multiple host interfaces as well as the integration of the on-chip interconnect. Additionally, some of the already existing functionality has been revised and improved to reach better performance and a lower latency. Micro-benchmark results are presented to underline the contribution of the made modifications

    Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    Get PDF
    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments

    Multigrain shared memory

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 197-203).by Donald Yeung.Ph.D

    QProf--a scalable profiler for the Q back end

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (leaves 129-130).by Greg McLaren.M.Eng

    A configurable vector processor for accelerating speech coding algorithms

    Get PDF
    The growing demand for voice-over-packer (VoIP) services and multimedia-rich applications has made increasingly important the efficient, real-time implementation of low-bit rates speech coders on embedded VLSI platforms. Such speech coders are designed to substantially reduce the bandwidth requirements thus enabling dense multichannel gateways in small form factor. This however comes at a high computational cost which mandates the use of very high performance embedded processors. This thesis investigates the potential acceleration of two major ITU-T speech coding algorithms, namely G.729A and G.723.1, through their efficient implementation on a configurable extensible vector embedded CPU architecture. New scalar and vector ISAs were introduced which resulted in up to 80% reduction in the dynamic instruction count of both workloads. These instructions were subsequently encapsulated into a parametric, hybrid SISD (scalar processor)–SIMD (vector) processor. This work presents the research and implementation of the vector datapath of this vector coprocessor which is tightly-coupled to a Sparc-V8 compliant CPU, the optimization and simulation methodologies employed and the use of Electronic System Level (ESL) techniques to rapidly design SIMD datapaths
    corecore