1,342 research outputs found

    GROUNDTRUTH GENERATION AND DOCUMENT IMAGE DEGRADATION

    Get PDF
    The problem of generating synthetic data for the training and evaluation of document analysis systems has been widely addressed in recent years. With the increased interest in processing multilingual sources, however, there is a tremendous need to be able to rapidly generate data in new languages and scripts, without the need to develop specialized systems. We have developed a system, which uses language support of the MS Windows operating system combined with custom print drivers to render tiff images simultaneously with windows Enhanced Metafile directives. The metafile information is parsed to generate zone, line, word, and character ground truth including location, font information and content in any language supported by Windows. The resulting images can be physically or synthetically degraded by our degradation modules, and used for training and evaluating Optical Character Recognition (OCR) systems. Our document image degradation methodology incorporates several often-encountered types of noise at the page and pixel levels. Examples of OCR evaluation and synthetically degraded document images are given to demonstrate the effectiveness

    Objects extraction and recognition for camera-based interaction : heuristic and statistical approaches

    Get PDF
    In this thesis, heuristic and probabilistic methods are applied to a number of problems for camera-based interactions. The goal is to provide solutions for a vision based system that is able to extract and analyze interested objects in camera images and to use that information for various interactions for mobile usage. New methods and new attempts of combination of existing methods are developed for different applications, including text extraction from complex scene images, bar code reading performed by camera phones, and face/facial feature detection and facial expression manipulation. The application-driven problems of camera-based interaction can not be modeled by a uniform and straightforward model that has very strong simplifications of reality. The solutions we learned to be efficient were to apply heuristic but easy of implementation approaches at first to reduce the complexity of the problems and search for possible means, then use developed statistical learning approaches to deal with the remaining difficult but well-defined problems and get much better accuracy. The process can be evolved in some or all of the stages, and the combination of the approaches is problem-dependent. Contribution of this thesis resides in two aspects: firstly, new features and approaches are proposed either as heuristics or statistical means for concrete applications; secondly engineering design combining seveal methods for system optimization is studied. Geometrical characteristics and the alignment of text, texture features of bar codes, and structures of faces can all be extracted as heuristics for object extraction and further recognition. The boosting algorithm is one of the proper choices to perform probabilistic learning and to achieve desired accuracy. New feature selection techniques are proposed for constructing the weak learner and applying the boosting output in concrete applications. Subspace methods such as manifold learning algorithms are introduced and tailored for facial expression analysis and synthesis. A modified generalized learning vector quantization method is proposed to deal with the blurring of bar code images. Efficient implementations that combine the approaches in a rational joint point are presented and the results are illustrated.reviewe

    Word Searching in Scene Image and Video Frame in Multi-Script Scenario using Dynamic Shape Coding

    Full text link
    Retrieval of text information from natural scene images and video frames is a challenging task due to its inherent problems like complex character shapes, low resolution, background noise, etc. Available OCR systems often fail to retrieve such information in scene/video frames. Keyword spotting, an alternative way to retrieve information, performs efficient text searching in such scenarios. However, current word spotting techniques in scene/video images are script-specific and they are mainly developed for Latin script. This paper presents a novel word spotting framework using dynamic shape coding for text retrieval in natural scene image and video frames. The framework is designed to search query keyword from multiple scripts with the help of on-the-fly script-wise keyword generation for the corresponding script. We have used a two-stage word spotting approach using Hidden Markov Model (HMM) to detect the translated keyword in a given text line by identifying the script of the line. A novel unsupervised dynamic shape coding based scheme has been used to group similar shape characters to avoid confusion and to improve text alignment. Next, the hypotheses locations are verified to improve retrieval performance. To evaluate the proposed system for searching keyword from natural scene image and video frames, we have considered two popular Indic scripts such as Bangla (Bengali) and Devanagari along with English. Inspired by the zone-wise recognition approach in Indic scripts[1], zone-wise text information has been used to improve the traditional word spotting performance in Indic scripts. For our experiment, a dataset consisting of images of different scenes and video frames of English, Bangla and Devanagari scripts were considered. The results obtained showed the effectiveness of our proposed word spotting approach.Comment: Multimedia Tools and Applications, Springe

    Adaptive Algorithms for Automated Processing of Document Images

    Get PDF
    Large scale document digitization projects continue to motivate interesting document understanding technologies such as script and language identification, page classification, segmentation and enhancement. Typically, however, solutions are still limited to narrow domains or regular formats such as books, forms, articles or letters and operate best on clean documents scanned in a controlled environment. More general collections of heterogeneous documents challenge the basic assumptions of state-of-the-art technology regarding quality, script, content and layout. Our work explores the use of adaptive algorithms for the automated analysis of noisy and complex document collections. We first propose, implement and evaluate an adaptive clutter detection and removal technique for complex binary documents. Our distance transform based technique aims to remove irregular and independent unwanted foreground content while leaving text content untouched. The novelty of this approach is in its determination of best approximation to clutter-content boundary with text like structures. Second, we describe a page segmentation technique called Voronoi++ for complex layouts which builds upon the state-of-the-art method proposed by Kise [Kise1999]. Our approach does not assume structured text zones and is designed to handle multi-lingual text in both handwritten and printed form. Voronoi++ is a dynamically adaptive and contextually aware approach that considers components' separation features combined with Docstrum [O'Gorman1993] based angular and neighborhood features to form provisional zone hypotheses. These provisional zones are then verified based on the context built from local separation and high-level content features. Finally, our research proposes a generic model to segment and to recognize characters for any complex syllabic or non-syllabic script, using font-models. This concept is based on the fact that font files contain all the information necessary to render text and thus a model for how to decompose them. Instead of script-specific routines, this work is a step towards a generic character and recognition scheme for both Latin and non-Latin scripts

    Information Preserving Processing of Noisy Handwritten Document Images

    Get PDF
    Many pre-processing techniques that normalize artifacts and clean noise induce anomalies due to discretization of the document image. Important information that could be used at later stages may be lost. A proposed composite-model framework takes into account pre-printed information, user-added data, and digitization characteristics. Its benefits are demonstrated by experiments with statistically significant results. Separating pre-printed ruling lines from user-added handwriting shows how ruling lines impact people\u27s handwriting and how they can be exploited for identifying writers. Ruling line detection based on multi-line linear regression reduces the mean error of counting them from 0.10 to 0.03, 6.70 to 0.06, and 0.13 to 0.02, com- pared to an HMM-based approach on three standard test datasets, thereby reducing human correction time by 50%, 83%, and 72% on average. On 61 page images from 16 rule-form templates, the precision and recall of form cell recognition are increased by 2.7% and 3.7%, compared to a cross-matrix approach. Compensating for and exploiting ruling lines during feature extraction rather than pre-processing raises the writer identification accuracy from 61.2% to 67.7% on a 61-writer noisy Arabic dataset. Similarly, counteracting page-wise skew by subtracting it or transforming contours in a continuous coordinate system during feature extraction improves the writer identification accuracy. An implementation study of contour-hinge features reveals that utilizing the full probabilistic probability distribution function matrix improves the writer identification accuracy from 74.9% to 79.5%

    Extraction of textual information from image for information retrieval

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore