235 research outputs found

    A coalgebraic perspective on logical interpretations

    Get PDF
    In Computer Science stepwise refinement of algebraic specifications is a well-known formal methodology for rigorous program development. This paper illustrates how techniques from Algebraic Logic, in particular that of interpretation, understood as a multifunction that preserves and reflects logical consequence, capture a number of relevant transformations in the context of software design, reuse, and adaptation, difficult to deal with in classical approaches. Examples include data encapsulation and the decomposition of operations into atomic transactions. But if interpretations open such a new research avenue in program refinement, (conceptual) tools are needed to reason about them. In this line, the paper’s main contribution is a study of the correspondence between logical interpretations and morphisms of a particular kind of coalgebras. This opens way to the use of coalgebraic constructions, such as simulation and bisimulation, in the study of interpretations between (abstract) logics.Fundação para a Ciência e a Tecnologia (FCT

    A modular approach to defining and characterising notions of simulation

    Get PDF
    We propose a modular approach to defining notions of simulation, and modal logics which characterise them. We use coalgebras to model state-based systems, relators to define notions of simulation for such systems, and inductive techniques to define the syntax and semantics of modal logics for coalgebras. We show that the expressiveness of an inductively defined logic for coalgebras w.r.t. a notion of simulation follows from an expressivity condition involving one step in the definition of the logic, and the relator inducing that notion of simulation. Moreover, we show that notions of simulation and associated characterising logics for increasingly complex system types can be derived by lifting the operations used to combine system types, to a relational level as well as to a logical level. We use these results to obtain Baltag’s logic for coalgebraic simulation, as well as notions of simulation and associated logics for a large class of non-deterministic and probabilistic systems

    Coalgebraic completeness-via-canonicity for distributive substructural logics

    Get PDF
    We prove strong completeness of a range of substructural logics with respect to a natural poset-based relational semantics using a coalgebraic version of completeness-via-canonicity. By formalizing the problem in the language of coalgebraic logics, we develop a modular theory which covers a wide variety of different logics under a single framework, and lends itself to further extensions. Moreover, we believe that the coalgebraic framework provides a systematic and principled way to study the relationship between resource models on the semantics side, and substructural logics on the syntactic side.Comment: 36 page

    Linear Time Logics - A Coalgebraic Perspective

    Full text link
    We describe a general approach to deriving linear time logics for a wide variety of state-based, quantitative systems, by modelling the latter as coalgebras whose type incorporates both branching behaviour and linear behaviour. Concretely, we define logics whose syntax is determined by the choice of linear behaviour and whose domain of truth values is determined by the choice of branching, and we provide two equivalent semantics for them: a step-wise semantics amenable to automata-based verification, and a path-based semantics akin to those of standard linear time logics. We also provide a semantic characterisation of the associated notion of logical equivalence, and relate it to previously-defined maximal trace semantics for such systems. Instances of our logics support reasoning about the possibility, likelihood or minimal cost of exhibiting a given linear time property. We conclude with a generalisation of the logics, dual in spirit to logics with discounting, which increases their practical appeal in the context of resource-aware computation by incorporating a notion of offsetting.Comment: Major revision of previous version: Sections 4 and 5 generalise the results in the previous version, with new proofs; Section 6 contains new result

    A Definition Scheme for Quantitative Bisimulation

    Get PDF
    FuTS, state-to-function transition systems are generalizations of labeled transition systems and of familiar notions of quantitative semantical models as continuous-time Markov chains, interactive Markov chains, and Markov automata. A general scheme for the definition of a notion of strong bisimulation associated with a FuTS is proposed. It is shown that this notion of bisimulation for a FuTS coincides with the coalgebraic notion of behavioral equivalence associated to the functor on Set given by the type of the FuTS. For a series of concrete quantitative semantical models the notion of bisimulation as reported in the literature is proven to coincide with the notion of quantitative bisimulation obtained from the scheme. The comparison includes models with orthogonal behaviour, like interactive Markov chains, and with multiple levels of behavior, like Markov automata. As a consequence of the general result relating FuTS bisimulation and behavioral equivalence we obtain, in a systematic way, a coalgebraic underpinning of all quantitative bisimulations discussed.Comment: In Proceedings QAPL 2015, arXiv:1509.0816

    Categories for Dynamic Epistemic Logic

    Full text link
    The primary goal of this paper is to recast the semantics of modal logic, and dynamic epistemic logic (DEL) in particular, in category-theoretic terms. We first review the category of relations and categories of Kripke frames, with particular emphasis on the duality between relations and adjoint homomorphisms. Using these categories, we then reformulate the semantics of DEL in a more categorical and algebraic form. Several virtues of the new formulation will be demonstrated: The DEL idea of updating a model into another is captured naturally by the categorical perspective -- which emphasizes a family of objects and structural relationships among them, as opposed to a single object and structure on it. Also, the categorical semantics of DEL can be merged straightforwardly with a standard categorical semantics for first-order logic, providing a semantics for first-order DEL.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    Disjunctive bases: normal forms and model theory for modal logics

    Get PDF
    We present the concept of a disjunctive basis as a generic framework for normal forms in modal logic based on coalgebra. Disjunctive bases were defined in previous work on completeness for modal fixpoint logics, where they played a central role in the proof of a generic completeness theorem for coalgebraic mu-calculi. Believing the concept has a much wider significance, here we investigate it more thoroughly in its own right. We show that the presence of a disjunctive basis at the "one-step" level entails a number of good properties for a coalgebraic mu-calculus, in particular, a simulation theorem showing that every alternating automaton can be transformed into an equivalent nondeterministic one. Based on this, we prove a Lyndon theorem for the full fixpoint logic, its fixpoint-free fragment and its one-step fragment, a Uniform Interpolation result, for both the full mu-calculus and its fixpoint-free fragment, and a Janin-Walukiewicz-style characterization theorem for the mu-calculus under slightly stronger assumptions. We also raise the questions, when a disjunctive basis exists, and how disjunctive bases are related to Moss' coalgebraic "nabla" modalities. Nabla formulas provide disjunctive bases for many coalgebraic modal logics, but there are cases where disjunctive bases give useful normal forms even when nabla formulas fail to do so, our prime example being graded modal logic. We also show that disjunctive bases are preserved by forming sums, products and compositions of coalgebraic modal logics, providing tools for modular construction of modal logics admitting disjunctive bases. Finally, we consider the problem of giving a category-theoretic formulation of disjunctive bases, and provide a partial solution

    GSOS for non-deterministic processes with quantitative aspects

    Get PDF
    Recently, some general frameworks have been proposed as unifying theories for processes combining non-determinism with quantitative aspects (such as probabilistic or stochastically timed executions), aiming to provide general results and tools. This paper provides two contributions in this respect. First, we present a general GSOS specification format (and a corresponding notion of bisimulation) for non-deterministic processes with quantitative aspects. These specifications define labelled transition systems according to the ULTraS model, an extension of the usual LTSs where the transition relation associates any source state and transition label with state reachability weight functions (like, e.g., probability distributions). This format, hence called Weight Function SOS (WFSOS), covers many known systems and their bisimulations (e.g. PEPA, TIPP, PCSP) and GSOS formats (e.g. GSOS, Weighted GSOS, Segala-GSOS, among others). The second contribution is a characterization of these systems as coalgebras of a class of functors, parametric on the weight structure. This result allows us to prove soundness of the WFSOS specification format, and that bisimilarities induced by these specifications are always congruences.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Coalgebraic Geometric Logic: Basic Theory

    Get PDF
    Using the theory of coalgebra, we introduce a uniform framework for adding modalities to the language of propositional geometric logic. Models for this logic are based on coalgebras for an endofunctor on some full subcategory of the category of topological spaces and continuous functions. We investigate derivation systems, soundness and completeness for such geometric modal logics, and we we specify a method of lifting an endofunctor on Set, accompanied by a collection of predicate liftings, to an endofunctor on the category of topological spaces, again accompanied by a collection of (open) predicate liftings. Furthermore, we compare the notions of modal equivalence, behavioural equivalence and bisimulation on the resulting class of models, and we provide a final object for the corresponding category
    corecore