302 research outputs found

    Challenges in Partially-Automated Roadway Feature Mapping Using Mobile Laser Scanning and Vehicle Trajectory Data

    Get PDF
    Connected vehicle and driver's assistance applications are greatly facilitated by Enhanced Digital Maps (EDMs) that represent roadway features (e.g., lane edges or centerlines, stop bars). Due to the large number of signalized intersections and miles of roadway, manual development of EDMs on a global basis is not feasible. Mobile Terrestrial Laser Scanning (MTLS) is the preferred data acquisition method to provide data for automated EDM development. Such systems provide an MTLS trajectory and a point cloud for the roadway environment. The challenge is to automatically convert these data into an EDM. This article presents a new processing and feature extraction method, experimental demonstration providing SAE-J2735 map messages for eleven example intersections, and a discussion of the results that points out remaining challenges and suggests directions for future research.Comment: 6 pages, 5 figure

    Recognizing Features in Mobile Laser Scanning Point Clouds Towards 3D High-definition Road Maps for Autonomous Vehicles

    Get PDF
    The sensors mounted on a driverless vehicle are not always reliable for precise localization and navigation. By comparing the real-time sensory data with a priori map, the autonomous navigation system can transform the complicated sensor perception mission into a simple map-based localization task. However, the lack of robust solutions and standards for creating such lane-level high-definition road maps is a major challenge in this emerging field. This thesis presents a semi-automated method for extracting meaningful road features from mobile laser scanning (MLS) point clouds and creating 3D high-definition road maps for autonomous vehicles. After pre-processing steps including coordinate system transformation and non-ground point removal, a road edge detection algorithm is performed to distinguish road curbs and extract road surfaces followed by extraction of two categories of road markings. On the one hand, textual and directional road markings including arrows, symbols, and words are detected by intensity thresholding and conditional Euclidean clustering. On the other hand, lane markings (lines) are extracted by local intensity analysis and distance thresholding according to road design standards. Afterwards, centerline points in every single lane are estimated based on the position of the extracted lane markings. Ultimately, 3D road maps with precise road boundaries, road markings, and the estimated lane centerlines are created. The experimental results demonstrate the feasibility of the proposed method, which can accurately extract most road features from the MLS point clouds. The average recall, precision, and F1-score obtained from four datasets for road marking extraction are 93.87%, 93.76%, and 93.73%, respectively. All of the estimated lane centerlines are validated using the “ground truthing” data manually digitized from the 4 cm resolution UAV orthoimages. The results of a comparison study show the better performance of the proposed method than that of some other existing methods

    Methodology and Algorithms for Pedestrian Network Construction

    Get PDF
    With the advanced capabilities of mobile devices and the success of car navigation systems, interest in pedestrian navigation systems is on the rise. A critical component of any navigation system is a map database which represents a network (e.g., road networks in car navigation systems) and supports key functionality such as map display, geocoding, and routing. Road networks, mainly due to the popularity of car navigation systems, are well defined and publicly available. However, in pedestrian navigation systems, as well as other applications including urban planning and physical activities studies, road networks do not adequately represent the paths that pedestrians usually travel. Currently, there are no techniques to automatically construct pedestrian networks, impeding research and development of applications requiring pedestrian data. This coupled with the increased demand for pedestrian networks is the prime motivation for this dissertation which is focused on development of a methodology and algorithms that can construct pedestrian networks automatically. A methodology, which involves three independent approaches, network buffering (using existing road networks), collaborative mapping (using GPS traces collected by volunteers), and image processing (using high-resolution satellite and laser imageries) was developed. Experiments were conducted to evaluate the pedestrian networks constructed by these approaches with a pedestrian network baseline as a ground truth. The results of the experiments indicate that these three approaches, while differing in complexity and outcome, are viable for automatically constructing pedestrian networks

    Vessel tractography using an intensity based tensor model with branch detection

    Get PDF
    In this paper, we present a tubular structure seg- mentation method that utilizes a second order tensor constructed from directional intensity measurements, which is inspired from diffusion tensor image (DTI) modeling. The constructed anisotropic tensor which is fit inside a vessel drives the segmen- tation analogously to a tractography approach in DTI. Our model is initialized at a single seed point and is capable of capturing whole vessel trees by an automatic branch detection algorithm developed in the same framework. The centerline of the vessel as well as its thickness is extracted. Performance results within the Rotterdam Coronary Artery Algorithm Evaluation framework are provided for comparison with existing techniques. 96.4% average overlap with ground truth delineated by experts is obtained in addition to other measures reported in the paper. Moreover, we demonstrate further quantitative results over synthetic vascular datasets, and we provide quantitative experiments for branch detection on patient Computed Tomography Angiography (CTA) volumes, as well as qualitative evaluations on the same CTA datasets, from visual scores by a cardiologist expert

    COLTRANE: ConvolutiOnaL TRAjectory NEtwork for Deep Map Inference

    Full text link
    The process of automatic generation of a road map from GPS trajectories, called map inference, remains a challenging task to perform on a geospatial data from a variety of domains as the majority of existing studies focus on road maps in cities. Inherently, existing algorithms are not guaranteed to work on unusual geospatial sites, such as an airport tarmac, pedestrianized paths and shortcuts, or animal migration routes, etc. Moreover, deep learning has not been explored well enough for such tasks. This paper introduces COLTRANE, ConvolutiOnaL TRAjectory NEtwork, a novel deep map inference framework which operates on GPS trajectories collected in various environments. This framework includes an Iterated Trajectory Mean Shift (ITMS) module to localize road centerlines, which copes with noisy GPS data points. Convolutional Neural Network trained on our novel trajectory descriptor is then introduced into our framework to detect and accurately classify junctions for refinement of the road maps. COLTRANE yields up to 37% improvement in F1 scores over existing methods on two distinct real-world datasets: city roads and airport tarmac.Comment: BuildSys 201

    Automatic Reconstruction of Parametric, Volumetric Building Models from 3D Point Clouds

    Get PDF
    Planning, construction, modification, and analysis of buildings requires means of representing a building's physical structure and related semantics in a meaningful way. With the rise of novel technologies and increasing requirements in the architecture, engineering and construction (AEC) domain, two general concepts for representing buildings have gained particular attention in recent years. First, the concept of Building Information Modeling (BIM) is increasingly used as a modern means for representing and managing a building's as-planned state digitally, including not only a geometric model but also various additional semantic properties. Second, point cloud measurements are now widely used for capturing a building's as-built condition by means of laser scanning techniques. A particular challenge and topic of current research are methods for combining the strengths of both point cloud measurements and Building Information Modeling concepts to quickly obtain accurate building models from measured data. In this thesis, we present our recent approaches to tackle the intermeshed challenges of automated indoor point cloud interpretation using targeted segmentation methods, and the automatic reconstruction of high-level, parametric and volumetric building models as the basis for further usage in BIM scenarios. In contrast to most reconstruction methods available at the time, we fundamentally base our approaches on BIM principles and standards, and overcome critical limitations of previous approaches in order to reconstruct globally plausible, volumetric, and parametric models.Automatische Rekonstruktion von parametrischen, volumetrischen Gebäudemodellen aus 3D Punktwolken Für die Planung, Konstruktion, Modifikation und Analyse von Gebäuden werden Möglichkeiten zur sinnvollen Repräsentation der physischen Gebäudestruktur sowie dazugehöriger Semantik benötigt. Mit dem Aufkommen neuer Technologien und steigenden Anforderungen im Bereich von Architecture, Engineering and Construction (AEC) haben zwei Konzepte für die Repräsentation von Gebäuden in den letzten Jahren besondere Aufmerksamkeit erlangt. Erstens wird das Konzept des Building Information Modeling (BIM) zunehmend als ein modernes Mittel zur digitalen Abbildung und Verwaltung "As-Planned"-Zustands von Gebäuden verwendet, welches nicht nur ein geometrisches Modell sondern auch verschiedene zusätzliche semantische Eigenschaften beinhaltet. Zweitens werden Punktwolkenmessungen inzwischen häufig zur Aufnahme des "As-Built"-Zustands mittels Laser-Scan-Techniken eingesetzt. Eine besondere Herausforderung und Thema aktueller Forschung ist die Entwicklung von Methoden zur Vereinigung der Stärken von Punktwolken und Konzepten des Building Information Modeling um schnell akkurate Gebäudemodelle aus den gemessenen Daten zu erzeugen. In dieser Dissertation präsentieren wir unsere aktuellen Ansätze um die miteinander verwobenen Herausforderungen anzugehen, Punktwolken mithilfe geeigneter Segmentierungsmethoden automatisiert zu interpretieren, sowie hochwertige, parametrische und volumetrische Gebäudemodelle als Basis für die Verwendung im BIM-Umfeld zu rekonstruieren. Im Gegensatz zu den meisten derzeit verfügbaren Rekonstruktionsverfahren basieren unsere Ansätze grundlegend auf Prinzipien und Standards aus dem BIM-Umfeld und überwinden kritische Einschränkungen bisheriger Ansätze um vollständig plausible, volumetrische und parametrische Modelle zu erzeugen.</p

    An Automated Liver Vasculature Segmentation from CT Scans for Hepatic Surgical Planning

    Get PDF
    Liver vasculature segmentation is a crucial step for liver surgical planning. Segmentation of liver vasculature is an important part of the 3D visualisation of the liver anatomy. The spatial relationship between vessels and other liver structures, like tumors and liver anatomic segments, helps in reducing the surgical treatment risks. However, liver vessels segmentation is a challenging task, that is due to low contrast with neighboring parenchyma, the complex anatomy, the very thin branches and very small vessels. This paper introduces a fully automated framework consist of four steps to segment the vessels inside the liver organ. Firstly, in the preprocessing step, a combination of two filtering techniques are used to extract and enhance vessels inside the liver region, first the vesselness filter is used to extract the vessels structure, and then the anisotropic coherence enhancing diffusion (CED) filter is used to enhance the intensity within the tubular vessels structure. This step is followed by a smart multiple thresholding to extract the initial vasculature segmentation. The liver vasculature structures, including hepatic veins connected to the inferior vena cava and the portal veins, are extracted. Finally, the inferior vena cava is segmented and excluded from the vessels segmentation, as it is not considered as part of the liver vasculature structure. The liver vessel segmentation method is validated on the publically available 3DIRCAD datasets. Dice coefficient (DSC) is used to evaluate the method, the average DSC score achieved a score 68.5%. The proposed approach succeeded to segment liver vasculature from the liver envelope accurately, which makes it as potential tool for clinical preoperative planning

    Road Information Extraction from Mobile LiDAR Point Clouds using Deep Neural Networks

    Get PDF
    Urban roads, as one of the essential transportation infrastructures, provide considerable motivations for rapid urban sprawl and bring notable economic and social benefits. Accurate and efficient extraction of road information plays a significant role in the development of autonomous vehicles (AVs) and high-definition (HD) maps. Mobile laser scanning (MLS) systems have been widely used for many transportation-related studies and applications in road inventory, including road object detection, pavement inspection, road marking segmentation and classification, and road boundary extraction, benefiting from their large-scale data coverage, high surveying flexibility, high measurement accuracy, and reduced weather sensitivity. Road information from MLS point clouds is significant for road infrastructure planning and maintenance, and have an important impact on transportation-related policymaking, driving behaviour regulation, and traffic efficiency enhancement. Compared to the existing threshold-based and rule-based road information extraction methods, deep learning methods have demonstrated superior performance in 3D road object segmentation and classification tasks. However, three main challenges remain that impede deep learning methods for precisely and robustly extracting road information from MLS point clouds. (1) Point clouds obtained from MLS systems are always in large-volume and irregular formats, which has presented significant challenges for managing and processing such massive unstructured points. (2) Variations in point density and intensity are inevitable because of the profiling scanning mechanism of MLS systems. (3) Due to occlusions and the limited scanning range of onboard sensors, some road objects are incomplete, which considerably degrades the performance of threshold-based methods to extract road information. To deal with these challenges, this doctoral thesis proposes several deep neural networks that encode inherent point cloud features and extract road information. These novel deep learning models have been tested by several datasets to deliver robust and accurate road information extraction results compared to state-of-the-art deep learning methods in complex urban environments. First, an end-to-end feature extraction framework for 3D point cloud segmentation is proposed using dynamic point-wise convolutional operations at multiple scales. This framework is less sensitive to data distribution and computational power. Second, a capsule-based deep learning framework to extract and classify road markings is developed to update road information and support HD maps. It demonstrates the practical application of combining capsule networks with hierarchical feature encodings of georeferenced feature images. Third, a novel deep learning framework for road boundary completion is developed using MLS point clouds and satellite imagery, based on the U-shaped network and the conditional deep convolutional generative adversarial network (c-DCGAN). Empirical evidence obtained from experiments compared with state-of-the-art methods demonstrates the superior performance of the proposed models in road object semantic segmentation, road marking extraction and classification, and road boundary completion tasks
    • …
    corecore