15,493 research outputs found

    Recommender System Using Collaborative Filtering Algorithm

    Get PDF
    With the vast amount of data that the world has nowadays, institutions are looking for more and more accurate ways of using this data. Companies like Amazon use their huge amounts of data to give recommendations for users. Based on similarities among items, systems can give predictions for a new item’s rating. Recommender systems use the user, item, and ratings information to predict how other users will like a particular item. Recommender systems are now pervasive and seek to make profit out of customers or successfully meet their needs. However, to reach this goal, systems need to parse a lot of data and collect information, sometimes from different resources, and predict how the user will like the product or item. The computation power needed is considerable. Also, companies try to avoid flooding customer mailboxes with hundreds of products each morning, thus they are looking for one email or text that will make the customer look and act. The motivation to do the project comes from my eagerness to learn website design and get a deep understanding of recommender systems. Applying machine learning dynamically is one of the goals that I set for myself and I wanted to go beyond that and verify my result. Thus, I had to use a large dataset to test the algorithm and compare each technique in terms of error rate. My experience with applying collaborative filtering helps me to understand that finding a solution is not enough, but to strive for a fast and ultimate one. In my case, testing my algorithm in a large data set required me to refine the coding strategy of the algorithm many times to speed the process. In this project, I have designed a website that uses different techniques for recommendations. User-based, Item-based, and Model-based approaches of collaborative filtering are what I have used. Every technique has its way of predicting the user rating for a new item based on existing users’ data. To evaluate each method, I used Movie Lens, an external data set of users, items, and ratings, and calculated the error rate using Mean Absolute Error Rate (MAE) and Root Mean Squared Error (RMSE). Finally, each method has its strengths and weaknesses that relate to the domain in which I am applying these methods

    Improving Reachability and Navigability in Recommender Systems

    Full text link
    In this paper, we investigate recommender systems from a network perspective and investigate recommendation networks, where nodes are items (e.g., movies) and edges are constructed from top-N recommendations (e.g., related movies). In particular, we focus on evaluating the reachability and navigability of recommendation networks and investigate the following questions: (i) How well do recommendation networks support navigation and exploratory search? (ii) What is the influence of parameters, in particular different recommendation algorithms and the number of recommendations shown, on reachability and navigability? and (iii) How can reachability and navigability be improved in these networks? We tackle these questions by first evaluating the reachability of recommendation networks by investigating their structural properties. Second, we evaluate navigability by simulating three different models of information seeking scenarios. We find that with standard algorithms, recommender systems are not well suited to navigation and exploration and propose methods to modify recommendations to improve this. Our work extends from one-click-based evaluations of recommender systems towards multi-click analysis (i.e., sequences of dependent clicks) and presents a general, comprehensive approach to evaluating navigability of arbitrary recommendation networks

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    CRUC: Cold-start Recommendations Using Collaborative Filtering in Internet of Things

    Get PDF
    The Internet of Things (IoT) aims at interconnecting everyday objects (including both things and users) and then using this connection information to provide customized user services. However, IoT does not work in its initial stages without adequate acquisition of user preferences. This is caused by cold-start problem that is a situation where only few users are interconnected. To this end, we propose CRUC scheme - Cold-start Recommendations Using Collaborative Filtering in IoT, involving formulation, filtering and prediction steps. Extensive experiments over real cases and simulation have been performed to evaluate the performance of CRUC scheme. Experimental results show that CRUC efficiently solves the cold-start problem in IoT.Comment: Elsevier ESEP 2011: 9-10 December 2011, Singapore, Elsevier Energy Procedia, http://www.elsevier.com/locate/procedia/, 201
    • …
    corecore