7,801 research outputs found

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    Pollution-induced community tolerance in freshwater biofilms – from molecular mechanisms to loss of community functions

    Get PDF
    Exposure to herbicides poses a threat to aquatic biofilms by affecting their community structure, physiology and function. These changes render biofilms to become more tolerant, but on the downside community tolerance has ecologic costs. A concept that addresses induced community tolerance to a pollutant (PICT) was introduced by Blanck and Wängberg (1988). The basic principle of the concept is that microbial communities undergo pollution-induced succession when exposed to a pollutant over a long period of time, which changes communities structurally and functionally and enhancing tolerance to the pollutant exposure. However, the mechanisms of tolerance and the ecologic consequences were hardly studied up to date. This thesis addresses the structural and functional changes in biofilm communities and applies modern molecular methods to unravel molecular tolerance mechanisms. Two different freshwater biofilm communities were cultivated for a period of five weeks, with one of the communities being contaminated with 4 μg L-1 diuron. Subsequently, the communities were characterized for structural and functional differences, especially focusing on their crucial role of photosynthesis. The community structure of the autotrophs was assessed using HPLC-based pigment analysis and their functional alterations were investigated using Imaging-PAM fluorometry to study photosynthesis and community oxygen profiling to determine net primary production. Then, the molecular fingerprints of the communities were measured with meta-transcriptomics (RNA-Seq) and GC-based community metabolomics approaches and analyzed with respect to changes in their molecular functions. The communities were acute exposed to diuron for one hour in a dose-response design, to reveal a potential PICT and uncover related adaptation to diuron exposure. The combination of apical and molecular methods in a dose-response design enabled the linkage of functional effects of diuron exposure and underlying molecular mechanisms based on a sensitivity analysis. Chronic exposure to diuron impaired freshwater biofilms in their biomass accrual. The contaminated communities particularly lost autotrophic biomass, reflected by the decrease in specific chlorophyll a content. This loss was associated with a change in the molecular fingerprint of the communities, which substantiates structural and physiological changes. The decline in autotrophic biomass could be due to a primary loss of sensitive autotrophic organisms caused by the selection of better adapted species in the course of chronic exposure. Related to this hypothesis, an increase in diuron tolerance has been detected in the contaminated communities and molecular mechanisms facilitating tolerance have been found. It was shown that genes of the photosystem, reductive-pentose phosphate cycle and arginine metabolism were differentially expressed among the communities and that an increased amount of potential antioxidant degradation products was found in the contaminated communities. This led to the hypothesis that contaminated communities may have adapted to oxidative stress, making them less sensitive to diuron exposure. Moreover, the photosynthetic light harvesting complex was altered and the photoprotective xanthophyll cycle was increased in the contaminated communities. Despite these adaptation strategies, the loss of autotrophic biomass has been shown to impair primary production. This impairment persisted even under repeated short-term exposure, so that the tolerance mechanisms cannot safeguard primary production as a key function in aquatic systems.:1. The effect of chemicals on organisms and their functions .............................. 1 1.1 Welcome to the anthropocene .......................................................................... 1 1.2 From cellular stress responses to ecosystem resilience ................................... 3 1.2.1 The individual pursuit for homeostasis ....................................................... 3 1.2.2 Stability from diversity ................................................................................. 5 1.3 Community ecotoxicology - a step forward in monitoring the effects of chemical pollution? ................................................................................................................. 6 1.4 Functional ecotoxicological assessment of microbial communities ................... 9 1.5 Molecular tools – the key to a mechanistic understanding of stressor effects from a functional perspective in microbial communities? ...................................... 12 2. Aims and Hypothesis ......................................................................................... 14 2.1 Research question .......................................................................................... 14 2.2 Hypothesis and outline .................................................................................... 15 2.3 Experimental approach & concept .................................................................. 16 2.3.1 Aquatic freshwater biofilms as model community ..................................... 16 2.3.2 Diuron as model herbicide ........................................................................ 17 2.3.3 Experimental design ................................................................................. 18 3. Structural and physiological changes in microbial communities after chronic exposure - PICT and altered functional capacity ................................................. 21 3.1 Introduction ..................................................................................................... 21 3.2 Methods .......................................................................................................... 23 3.2.1 Biofilm cultivation ...................................................................................... 23 3.2.2 Dry weight and autotrophic index ............................................................. 23 3.2.4 Pigment analysis of periphyton ................................................................. 23 3.2.4.1 In-vivo pigment analysis for community characterization ....................... 24 3.2.4.2 In-vivo pigment analysis based on Imaging-PAM fluorometry ............... 24 3.2.4.3 In-vivo pigment fluorescence for tolerance detection ............................. 26 3.2.4.4 Ex-vivo pigment analysis by high-pressure liquid-chromatography ....... 27 3.2.5 Community oxygen metabolism measurements ....................................... 28 3.3 Results and discussion ................................................................................... 29 3.3.1 Comparison of the structural community parameters ............................... 29 3.3.2 Photosynthetic activity and primary production of the communities after selection phase ................................................................................................. 33 3.3.3 Acquisition of photosynthetic tolerance .................................................... 34 3.3.4 Primary production at exposure conditions ............................................... 36 3.3.5 Tolerance detection in primary production ................................................ 37 3.4 Summary and Conclusion ........................................................................... 40 4. Community gene expression analysis by meta-transcriptomics ................... 41 4.1 Introduction to meta-transcriptomics ............................................................... 41 4.2. Methods ......................................................................................................... 43 4.2.1 Sampling and RNA extraction................................................................... 43 4.2.2 RNA sequencing analysis ......................................................................... 44 4.2.3 Data assembly and processing................................................................. 45 4.2.4 Prioritization of contigs and annotation ..................................................... 47 4.2.5 Sensitivity analysis of biological processes .............................................. 48 4.3 Results and discussion ................................................................................... 48 4.3.1 Characterization of the meta-transcriptomic fingerprints .......................... 49 4.3.2 Insights into community stress response mechanisms using trend analysis (DRomic’s) ......................................................................................................... 51 4.3.3 Response pattern in the isoform PS genes .............................................. 63 4.5 Summary and conclusion ................................................................................ 65 5. Community metabolome analysis ..................................................................... 66 5.1 Introduction to community metabolomics ........................................................ 66 5.2 Methods .......................................................................................................... 68 5.2.1 Sampling, metabolite extraction and derivatisation................................... 68 5.2.2 GC-TOF-MS analysis ............................................................................... 69 5.2.3 Data processing and statistical analysis ................................................... 69 5.3 Results and discussion ................................................................................... 70 5.3.1 Characterization of the metabolic fingerprints .......................................... 70 5.3.2 Difference in the metabolic fingerprints .................................................... 71 5.3.3 Differential metabolic responses of the communities to short-term exposure of diuron ............................................................................................................ 73 5.4 Summary and conclusion ................................................................................ 78 6. Synthesis ............................................................................................................. 79 6.1 Approaches and challenges for linking molecular data to functional measurements ...................................................................................................... 79 6.2 Methods .......................................................................................................... 83 6.2.1 Summary on the data ............................................................................... 83 6.2.2 Aggregation of molecular data to index values (TELI and MELI) .............. 83 6.2.3 Functional annotation of contigs and metabolites using KEGG ................ 83 6.3 Results and discussion ................................................................................... 85 6.3.1 Results of aggregation techniques ........................................................... 85 6.3.2 Sensitivity analysis of the different molecular approaches and endpoints 86 6.3.3 Mechanistic view of the molecular stress responses based on KEGG functions ............................................................................................................ 89 6.4 Consolidation of the results – holistic interpretation and discussion ............... 93 6.4.1 Adaptation to chronic diuron exposure - from molecular changes to community effects.............................................................................................. 93 6.4.2 Assessment of the ecological costs of Pollution-induced community tolerance based on primary production ............................................................. 94 6.5 Outlook ............................................................................................................ 9

    Examples of works to practice staccato technique in clarinet instrument

    Get PDF
    Klarnetin staccato tekniğini güçlendirme aşamaları eser çalışmalarıyla uygulanmıştır. Staccato geçişlerini hızlandıracak ritim ve nüans çalışmalarına yer verilmiştir. Çalışmanın en önemli amacı sadece staccato çalışması değil parmak-dilin eş zamanlı uyumunun hassasiyeti üzerinde de durulmasıdır. Staccato çalışmalarını daha verimli hale getirmek için eser çalışmasının içinde etüt çalışmasına da yer verilmiştir. Çalışmaların üzerinde titizlikle durulması staccato çalışmasının ilham verici etkisi ile müzikal kimliğe yeni bir boyut kazandırmıştır. Sekiz özgün eser çalışmasının her aşaması anlatılmıştır. Her aşamanın bir sonraki performans ve tekniği güçlendirmesi esas alınmıştır. Bu çalışmada staccato tekniğinin hangi alanlarda kullanıldığı, nasıl sonuçlar elde edildiği bilgisine yer verilmiştir. Notaların parmak ve dil uyumu ile nasıl şekilleneceği ve nasıl bir çalışma disiplini içinde gerçekleşeceği planlanmıştır. Kamış-nota-diyafram-parmak-dil-nüans ve disiplin kavramlarının staccato tekniğinde ayrılmaz bir bütün olduğu saptanmıştır. Araştırmada literatür taraması yapılarak staccato ile ilgili çalışmalar taranmıştır. Tarama sonucunda klarnet tekniğin de kullanılan staccato eser çalışmasının az olduğu tespit edilmiştir. Metot taramasında da etüt çalışmasının daha çok olduğu saptanmıştır. Böylelikle klarnetin staccato tekniğini hızlandırma ve güçlendirme çalışmaları sunulmuştur. Staccato etüt çalışmaları yapılırken, araya eser çalışmasının girmesi beyni rahatlattığı ve istekliliği daha arttırdığı gözlemlenmiştir. Staccato çalışmasını yaparken doğru bir kamış seçimi üzerinde de durulmuştur. Staccato tekniğini doğru çalışmak için doğru bir kamışın dil hızını arttırdığı saptanmıştır. Doğru bir kamış seçimi kamıştan rahat ses çıkmasına bağlıdır. Kamış, dil atma gücünü vermiyorsa daha doğru bir kamış seçiminin yapılması gerekliliği vurgulanmıştır. Staccato çalışmalarında baştan sona bir eseri yorumlamak zor olabilir. Bu açıdan çalışma, verilen müzikal nüanslara uymanın, dil atış performansını rahatlattığını ortaya koymuştur. Gelecek nesillere edinilen bilgi ve birikimlerin aktarılması ve geliştirici olması teşvik edilmiştir. Çıkacak eserlerin nasıl çözüleceği, staccato tekniğinin nasıl üstesinden gelinebileceği anlatılmıştır. Staccato tekniğinin daha kısa sürede çözüme kavuşturulması amaç edinilmiştir. Parmakların yerlerini öğrettiğimiz kadar belleğimize de çalışmaların kaydedilmesi önemlidir. Gösterilen azmin ve sabrın sonucu olarak ortaya çıkan yapıt başarıyı daha da yukarı seviyelere çıkaracaktır

    Procedure-Aware Pretraining for Instructional Video Understanding

    Full text link
    Our goal is to learn a video representation that is useful for downstream procedure understanding tasks in instructional videos. Due to the small amount of available annotations, a key challenge in procedure understanding is to be able to extract from unlabeled videos the procedural knowledge such as the identity of the task (e.g., 'make latte'), its steps (e.g., 'pour milk'), or the potential next steps given partial progress in its execution. Our main insight is that instructional videos depict sequences of steps that repeat between instances of the same or different tasks, and that this structure can be well represented by a Procedural Knowledge Graph (PKG), where nodes are discrete steps and edges connect steps that occur sequentially in the instructional activities. This graph can then be used to generate pseudo labels to train a video representation that encodes the procedural knowledge in a more accessible form to generalize to multiple procedure understanding tasks. We build a PKG by combining information from a text-based procedural knowledge database and an unlabeled instructional video corpus and then use it to generate training pseudo labels with four novel pre-training objectives. We call this PKG-based pre-training procedure and the resulting model Paprika, Procedure-Aware PRe-training for Instructional Knowledge Acquisition. We evaluate Paprika on COIN and CrossTask for procedure understanding tasks such as task recognition, step recognition, and step forecasting. Paprika yields a video representation that improves over the state of the art: up to 11.23% gains in accuracy in 12 evaluation settings. Implementation is available at https://github.com/salesforce/paprika.Comment: CVPR 202

    Embodying entrepreneurship: everyday practices, processes and routines in a technology incubator

    Get PDF
    The growing interest in the processes and practices of entrepreneurship has been dominated by a consideration of temporality. Through a thirty-six-month ethnography of a technology incubator, this thesis contributes to extant understanding by exploring the effect of space. The first paper explores how class structures from the surrounding city have appropriated entrepreneurship within the incubator. The second paper adopts a more explicitly spatial analysis to reveal how the use of space influences a common understanding of entrepreneurship. The final paper looks more closely at the entrepreneurs within the incubator and how they use visual symbols to develop their identity. Taken together, the three papers reject the notion of entrepreneurship as a primarily economic endeavour as articulated through commonly understood language and propose entrepreneuring as an enigmatic attractor that is accessed through the ambiguity of the non-verbal to develop the ‘new’. The thesis therefore contributes to the understanding of entrepreneurship and proposes a distinct role for the non-verbal in that understanding

    Data-to-text generation with neural planning

    Get PDF
    In this thesis, we consider the task of data-to-text generation, which takes non-linguistic structures as input and produces textual output. The inputs can take the form of database tables, spreadsheets, charts, and so on. The main application of data-to-text generation is to present information in a textual format which makes it accessible to a layperson who may otherwise find it problematic to understand numerical figures. The task can also automate routine document generation jobs, thus improving human efficiency. We focus on generating long-form text, i.e., documents with multiple paragraphs. Recent approaches to data-to-text generation have adopted the very successful encoder-decoder architecture or its variants. These models generate fluent (but often imprecise) text and perform quite poorly at selecting appropriate content and ordering it coherently. This thesis focuses on overcoming these issues by integrating content planning with neural models. We hypothesize data-to-text generation will benefit from explicit planning, which manifests itself in (a) micro planning, (b) latent entity planning, and (c) macro planning. Throughout this thesis, we assume the input to our generator are tables (with records) in the sports domain. And the output are summaries describing what happened in the game (e.g., who won/lost, ..., scored, etc.). We first describe our work on integrating fine-grained or micro plans with data-to-text generation. As part of this, we generate a micro plan highlighting which records should be mentioned and in which order, and then generate the document while taking the micro plan into account. We then show how data-to-text generation can benefit from higher level latent entity planning. Here, we make use of entity-specific representations which are dynam ically updated. The text is generated conditioned on entity representations and the records corresponding to the entities by using hierarchical attention at each time step. We then combine planning with the high level organization of entities, events, and their interactions. Such coarse-grained macro plans are learnt from data and given as input to the generator. Finally, we present work on making macro plans latent while incrementally generating a document paragraph by paragraph. We infer latent plans sequentially with a structured variational model while interleaving the steps of planning and generation. Text is generated by conditioning on previous variational decisions and previously generated text. Overall our results show that planning makes data-to-text generation more interpretable, improves the factuality and coherence of the generated documents and re duces redundancy in the output document

    Stratigraphy, chronology, and correlation of the Plio-Pleistocene (c. 2.2-0.8 Ma) Kauroa Ash sequence, western central North Island, New Zealand

    Get PDF
    The Kauroa Ash beds (K-beds) comprise a 12-20 m-thick sequence of extremely weathered, clay-rich (40-95% <4 μm clay) beds of tephra and loess, and associated paleosols. Found in isolated remnants throughout the western central North Island, the sequence comprises 15 defined members, with as many as 44 constituent macroscopic beds. The type site, ‘Woodstock’, near Raglan, is the most comprehensive sequence known, but other sites (e.g. Papakura Creek and Tiritirimatangi Peninsula) contain units not found or poorly defined at Woodstock. Field properties as well as magnetic susceptibility measurements and particle-size analysis characterise the facies in the sequence. Field properties (in particular colour, consistence, macrofabric) describe the lithostratigraphy. The sequence contains five interpretive (i.e. genetic) ‘facies’: paleosols, primary tephra, very weathered tephra (possibly composite beds), loess and ‘tephric loess’ beds. At least seven loess beds are (newly) identified in the sequence: K4a, K5, K6ai, K8ai, K8bi, K10a and K14ai. Mass-specific susceptibility and frequency-dependent susceptibility results partly conform to established models (developed mostly on Chinese loess-paleosol deposits) of susceptibility enhancement in paleosols and depletion in loess. Many parts of the sequence do not appear to conform to this model and the results more closely resemble the inverse relationship found on Alaskan loess-paleosol beds. Frequency-dependent susceptibility is reliable in delineating paleosols by their ‘ultrafine’ ferrimagnetic mineral content, and citrate-bicarbonate-dithionite treatments successfully remove all iron oxides so that remeasurement of susceptibility isolates a strictly ‘pedogenic’, rather than lithogenic, fraction. Laser diffraction particle-size analysis shows that the Kauroa Ash beds are texturally reasonably homogenous. They have bimodal particle-size distributions with the most dominant mode at around 11.25 ɸ inferred to be the product of intense and prolonged weathering. Other modes are variously centred on 7-8.5 ɸ and, despite weathering and pedogenesis, have some relationship to the original depositional particle-size distributions because trends between facies (i.e. genetic units) are delineated. Principal components analysis objectively characterises these modes as (Wentworth size classes) ‘very fine clay’ and ‘coarse silt’, although there is no proportional relationship between them, supporting a post-depositional origin for the former mode. The chronology of the sequence, previously poorly defined, is greatly improved by a combination of tephrochronologic correlations, fission-track dating, and paleomagnetism. Five zircon fission-track dates provide independent age ‘spikes’ and range from 2.24 ± 0.29 Ma in the basal member, K1, to 1.28 ± 0.11 Ma for the distal ignimbrite unit K12a. Paleomagnetism is invaluable in providing additional age information. The top of the sequence, member K15, is dated as >0.78 Ma (Brunhes-Matuyama boundary) because of its reversed polarity; two episodes of normal polarity are found in beds K14b and K2b and are inferred to represent the Jaramillo (1.07-0.99 Ma) and Olduvai (1.95-1.79 Ma) subchrons, respectively. Beds underlying the Kauroa Ash sequence are also of normal polarity, indicating that they were deposited in the Gauss Chron (>2.6 Ma). Identification and correlation of tephras by conventional means (fingerprinting by their lithological or geochemical properties) is impossible in the Kauroa Ash sequence because the beds have no remaining volcanic glass, which has instead been altered to an assemblage of authigenic phases (clays) by weathering and pedogenesis. However, a new technique analysing fresh glass found as melt inclusions in quartz grains is successful in circumventing this problem. Inclusions represent samples of non-degassed magma that became entrapped during phenocryst growth prior to eruption. The glass has remained unaltered because it is hermetically sealed in a chemically resistant phenocryst, which has protected it from weathering processes. Electron microprobe analysis of the glass inclusions yield results which are wholly reasonable for glass (totals ranging from 93-97%; low standard deviations of <1 %), and a number of provisional correlations are established by comparing the major element composition of Kauroa Ash tephra beds with those of proximal deposits. The Kauroa Ash sequence may contain deposits correlated with at least seven major TVZ eruptions, in many cases expanding the known extent of the (distal) deposit and, for the first time answering the question as to the origin of the Kauroa Ash beds. These correlations, together with an improved chronology, enable the Kauroa Ash sequence to be placed in a regional stratigraphic framework alongside other New Zealand Plio-Pleistocene sequences such as those in the Wanganui Basin, Wairarapa, Cape Kidnappers and Port Waikato. Using paleosols as chrono- and climatostratigraphic entities (correlated to warm periods in global climate), the sequence can also be placed alongside a global reference, the marine oxygen isotope stratigraphy. A further correlation to the Chinese loess-paleosol record suggests that large parts of the Kauroa Ash sequence were deposited in an incremental manner akin to deposition of loess, so that the sequence is not only a record of TVZ volcanism, but also of Plio-Pleistocene paleoclimate

    Chinese Benteng Women’s Participation in Local Development Affairs in Indonesia: Appropriate means for struggle and a pathway to claim citizen’ right?

    Get PDF
    It had been more than two decades passing by aftermath the devastating Asia’s Financial Crisis in 1997, subsequently followed by Suharto’s step down from his presidential throne which he occupied for more than three decades. The financial turmoil turned to a political disaster furthermore has led to massive looting that severely impacted Indonesians of Chinese descendant, including unresolved mystery of the most atrocious sexual violation against women and covert killings of students and democracy activists in this country. Since then, precisely aftermath May 1998, which publicly known as “Reformasi”1, Indonesia underwent political reform that eventually corresponded positively to its macroeconomic growth. Twenty years later, in 2018, Indonesia captured worldwide attention because it has successfully hosted two internationally renowned events, namely the Asian Games 2018 – the most prestigious sport events in Asia – conducted in Jakarta and Palembang; and the IMF/World Bank Annual Meeting 2018 in Bali. Particularly in the IMF/World Bank Annual Meeting, this event has significantly elevated Indonesia’s credibility and international prestige in the global economic powerplay as one of the nations with promising growth and openness. However, the narrative about poverty and inequality, including increasing racial tension, religious conservatism, and sexual violation against women are superseded by friendly climate for foreign investment and eventually excessive glorification of the nation’s economic growth. By portraying the image of promising new economic power, as rhetorically promised by President Joko Widodo during his presidential terms, Indonesia has swept the growing inequality in this highly stratified society that historically compounded with religious and racial tension under the carpet of digital economy.Arte y Humanidade
    corecore