19,277 research outputs found

    Metric clusters in evolutionary games on scale-free networks

    Full text link
    The evolution of cooperation in social dilemmas in structured populations has been studied extensively in recent years. Whereas many theoretical studies have found that a heterogeneous network of contacts favors cooperation, the impact of spatial effects in scale-free networks is still not well understood. In addition to being heterogeneous, real contact networks exhibit a high mean local clustering coefficient, which implies the existence of an underlying metric space. Here, we show that evolutionary dynamics in scale-free networks self-organize into spatial patterns in the underlying metric space. The resulting metric clusters of cooperators are able to survive in social dilemmas as their spatial organization shields them from surrounding defectors, similar to spatial selection in Euclidean space. We show that under certain conditions these metric clusters are more efficient than the most connected nodes at sustaining cooperation and that heterogeneity does not always favor--but can even hinder--cooperation in social dilemmas. Our findings provide a new perspective to understand the emergence of cooperation in evolutionary games in realistic structured populations

    Dynamic Learning, Herding and Guru Effects in Networks

    Get PDF
    It has been widely accepted that herding is the consequence of mimetic responses by agents interacting locally on a communication network. In extant models, this communication network linking agents, by and large, has been assumed to be fixed. In this paper we allow it to evolve endogenously by enabling agents to adaptively modify the weights of their links to their neighbours by reinforcing �good� advisors and breaking away from �bad� advisors with the latter being replaced randomly from the remaining agents. The resulting network not only allows for herding of agents, but crucially exhibits realistic properties of socio-economic networks that are otherwise difficult to replicate: high clustering, short average path length and a small number of highly connected agents, called "gurus". These properties are now well understood to characterize �small world networks� of Watts and Strogatz (1998).

    Multirelational Organization of Large-scale Social Networks in an Online World

    Full text link
    The capacity to collect fingerprints of individuals in online media has revolutionized the way researchers explore human society. Social systems can be seen as a non-linear superposition of a multitude of complex social networks, where nodes represent individuals and links capture a variety of different social relations. Much emphasis has been put on the network topology of social interactions, however, the multi-dimensional nature of these interactions has largely been ignored in empirical studies, mostly because of lack of data. Here, for the first time, we analyze a complete, multi-relational, large social network of a society consisting of the 300,000 odd players of a massive multiplayer online game. We extract networks of six different types of one-to-one interactions between the players. Three of them carry a positive connotation (friendship, communication, trade), three a negative (enmity, armed aggression, punishment). We first analyze these types of networks as separate entities and find that negative interactions differ from positive interactions by their lower reciprocity, weaker clustering and fatter-tail degree distribution. We then proceed to explore how the inter-dependence of different network types determines the organization of the social system. In particular we study correlations and overlap between different types of links and demonstrate the tendency of individuals to play different roles in different networks. As a demonstration of the power of the approach we present the first empirical large-scale verification of the long-standing structural balance theory, by focusing on the specific multiplex network of friendship and enmity relations.Comment: 7 pages, 5 figures, accepted for publication in PNA

    Evolutionary games on multilayer networks: A colloquium

    Get PDF
    Networks form the backbone of many complex systems, ranging from the Internet to human societies. Accordingly, not only is the range of our interactions limited and thus best described and modeled by networks, it is also a fact that the networks that are an integral part of such models are often interdependent or even interconnected. Networks of networks or multilayer networks are therefore a more apt description of social systems. This colloquium is devoted to evolutionary games on multilayer networks, and in particular to the evolution of cooperation as one of the main pillars of modern human societies. We first give an overview of the most significant conceptual differences between single-layer and multilayer networks, and we provide basic definitions and a classification of the most commonly used terms. Subsequently, we review fascinating and counterintuitive evolutionary outcomes that emerge due to different types of interdependencies between otherwise independent populations. The focus is on coupling through the utilities of players, through the flow of information, as well as through the popularity of different strategies on different network layers. The colloquium highlights the importance of pattern formation and collective behavior for the promotion of cooperation under adverse conditions, as well as the synergies between network science and evolutionary game theory.Comment: 14 two-column pages, 8 figures; accepted for publication in European Physical Journal

    Mutual Trust and Cooperation in the Evolutionary Hawks-Doves Game

    Full text link
    Using a new dynamical network model of society in which pairwise interactions are weighted according to mutual satisfaction, we show that cooperation is the norm in the Hawks-Doves game when individuals are allowed to break ties with undesirable neighbors and to make new acquaintances in their extended neighborhood. Moreover, cooperation is robust with respect to rather strong strategy perturbations. We also discuss the empirical structure of the emerging networks, and the reasons that allow cooperators to thrive in the population. Given the metaphorical importance of this game for social interaction, this is an encouraging positive result as standard theory for large mixing populations prescribes that a certain fraction of defectors must always exist at equilibrium.Comment: 23 pages 12 images, to appea
    • …
    corecore