1,102 research outputs found

    Maximum Likelihood Estimation of Closed Queueing Network Demands from Queue Length Data

    Get PDF
    Resource demand estimation is essential for the application of analyical models, such as queueing networks, to real-world systems. In this paper, we investigate maximum likelihood (ML) estimators for service demands in closed queueing networks with load-independent and load-dependent service times. Stemming from a characterization of necessary conditions for ML estimation, we propose new estimators that infer demands from queue-length measurements, which are inexpensive metrics to collect in real systems. One advantage of focusing on queue-length data compared to response times or utilizations is that confidence intervals can be rigorously derived from the equilibrium distribution of the queueing network model. Our estimators and their confidence intervals are validated against simulation and real system measurements for a multi-tier application

    Performance modelling with adaptive hidden Markov models and discriminatory processor sharing queues

    Get PDF
    In modern computer systems, workload varies at different times and locations. It is important to model the performance of such systems via workload models that are both representative and efficient. For example, model-generated workloads represent realistic system behaviour, especially during peak times, when it is crucial to predict and address performance bottlenecks. In this thesis, we model performance, namely throughput and delay, using adaptive models and discrete queues. Hidden Markov models (HMMs) parsimoniously capture the correlation and burstiness of workloads with spatiotemporal characteristics. By adapting the batch training of standard HMMs to incremental learning, online HMMs act as benchmarks on workloads obtained from live systems (i.e. storage systems and financial markets) and reduce time complexity of the Baum-Welch algorithm. Similarly, by extending HMM capabilities to train on multiple traces simultaneously it follows that workloads of different types are modelled in parallel by a multi-input HMM. Typically, the HMM-generated traces verify the throughput and burstiness of the real data. Applications of adaptive HMMs include predicting user behaviour in social networks and performance-energy measurements in smartphone applications. Equally important is measuring system delay through response times. For example, workloads such as Internet traffic arriving at routers are affected by queueing delays. To meet quality of service needs, queueing delays must be minimised and, hence, it is important to model and predict such queueing delays in an efficient and cost-effective manner. Therefore, we propose a class of discrete, processor-sharing queues for approximating queueing delay as response time distributions, which represent service level agreements at specific spatiotemporal levels. We adapt discrete queues to model job arrivals with distributions given by a Markov-modulated Poisson process (MMPP) and served under discriminatory processor-sharing scheduling. Further, we propose a dynamic strategy of service allocation to minimise delays in UDP traffic flows whilst maximising a utility function.Open Acces

    Queueing networks: solutions and applications

    Get PDF
    During the pasttwo decades queueing network models have proven to be a versatile tool for computer system and computer communication system performance evaluation. This chapter provides a survey of th field with a particular emphasis on applications. We start with a brief historical retrospective which also servesto introduce the majr issues and application areas. Formal results for product form queuenig networks are reviewed with particular emphasis on the implications for computer systems modeling. Computation algorithms, sensitivity analysis and optimization techniques are among the topics covered. Many of the important applicationsof queueing networks are not amenableto exact analysis and an (often confusing) array of approximation methods have been developed over the years. A taxonomy of approximation methods is given and used as the basis for for surveing the major approximation methods that have been studied. The application of queueing network to a number of areas is surveyed, including computer system cpacity planning, packet switching networks, parallel processing, database systems and availability modeling.Durante as últimas duas décadas modelos de redes de filas provaram ser uma ferramenta versátil para avaliação de desempenho de sistemas de computação e sistemas de comunicação. Este capítulo faz um apanhado geral da área, com ênfase em aplicações. Começamos com uma breve retrospectiva histórica que serve também para introduzir os pontos mais importantes e as áreas de aplicação. Resultados formais para redes de filas em forma de produto são revisados com ênfase na modelagem de sistemas de computação. Algoritmos de computação, análise de sensibilidade e técnicas de otimização estão entre os tópicos revistos. Muitas dentre importantes aplicações de redes de filas não são tratáveis por análise exata e uma série (frequentemente confusa) de métodos de aproximação tem sido desenvolvida. Uma taxonomia de métodos de aproximação é dada e usada como base para revisão dos mais importantes métodos de aproximação propostos. Uma revisão das aplicações de redes de filas em um número de áreas é feita, incluindo planejamento de capacidade de sistemas de computação, redes de comunicação por chaveamento de pacotes, processamento paralelo, sistemas de bancos de dados e modelagem de confiabilidade

    Load Dependent Single Chain Models of Multichain Closed Queueing Networks

    Get PDF

    Exploring gate-limited analytical models for high-performance network storage servers

    Get PDF
    Gate-limited service is a type of service discipline found in queueing theory and can be used to describe a number of operational environments, for example, large transport systems such as buses, trains or taxis, etc. Recently, there has been the observation that such systems can also be used to describe interactive Internet Services which use a Client/Server interaction. In addition, new services of this genre are being developed for the local area. One such service is a Network Memory Server (NMS) being developed here at Middlesex University. Though there are several examples of real systems that can be modelled using gate-limited service, it is fair to say that the analytical models which have been developed for gate-limited systems have been difficult to use, requiring many iterations before practical results can be generated. In this paper, a detailed gate-limited bulk service queueing model based on Markov chains is explored and a numerical solution is demonstrated for simple scenarios. Quantitative results are presented and compared with a mathematical simulation. The analysis is used to develop an algorithm based on the concept of optimum operational points. The algorithm is then employed to build a high-performance server which is capable of balancing the need to prefetch for streaming applications while promptly satisfying demand misses. The algorithm is further tested using a systems simulation and then incorporated into an Experimental File System (EFS) which showed that the algorithm can be used in a real networking environment

    A genetic approach to Markovian characterisation of H.264 scalable video

    Get PDF
    We propose an algorithm for multivariate Markovian characterisation of H.264/SVC scalable video traces at the sub-GoP (Group of Pictures) level. A genetic algorithm yields Markov models with limited state space that accurately capture temporal and inter-layer correlation. Key to our approach is the covariance-based fitness function. In comparison with the classical Expectation Maximisation algorithm, ours is capable of matching the second order statistics more accurately at the cost of less accuracy in matching the histograms of the trace. Moreover, a simulation study shows that our approach outperforms Expectation Maximisation in predicting performance of video streaming in various networking scenarios

    Learning Queuing Networks by Recurrent Neural Networks

    Full text link
    It is well known that building analytical performance models in practice is difficult because it requires a considerable degree of proficiency in the underlying mathematics. In this paper, we propose a machine-learning approach to derive performance models from data. We focus on queuing networks, and crucially exploit a deterministic approximation of their average dynamics in terms of a compact system of ordinary differential equations. We encode these equations into a recurrent neural network whose weights can be directly related to model parameters. This allows for an interpretable structure of the neural network, which can be trained from system measurements to yield a white-box parameterized model that can be used for prediction purposes such as what-if analyses and capacity planning. Using synthetic models as well as a real case study of a load-balancing system, we show the effectiveness of our technique in yielding models with high predictive power
    corecore