395 research outputs found

    A Clustering Approach to Learning Sparsely Used Overcomplete Dictionaries

    Get PDF
    We consider the problem of learning over complete dictionaries in the context of sparse coding, where each sample selects a sparse subset of dictionary elements. Our main result is a strategy to approximately recover the unknown dictionary using an efficient algorithm. Our algorithm is a clustering-style procedure, where each cluster is used to estimate a dictionary element. The resulting solution can often be further cleaned up to obtain a high accuracy estimate, and we provide one simple scenario where ℓ_1-regularized regression can be used for such a second stage

    New Guarantees for Blind Compressed Sensing

    Full text link
    Blind Compressed Sensing (BCS) is an extension of Compressed Sensing (CS) where the optimal sparsifying dictionary is assumed to be unknown and subject to estimation (in addition to the CS sparse coefficients). Since the emergence of BCS, dictionary learning, a.k.a. sparse coding, has been studied as a matrix factorization problem where its sample complexity, uniqueness and identifiability have been addressed thoroughly. However, in spite of the strong connections between BCS and sparse coding, recent results from the sparse coding problem area have not been exploited within the context of BCS. In particular, prior BCS efforts have focused on learning constrained and complete dictionaries that limit the scope and utility of these efforts. In this paper, we develop new theoretical bounds for perfect recovery for the general unconstrained BCS problem. These unconstrained BCS bounds cover the case of overcomplete dictionaries, and hence, they go well beyond the existing BCS theory. Our perfect recovery results integrate the combinatorial theories of sparse coding with some of the recent results from low-rank matrix recovery. In particular, we propose an efficient CS measurement scheme that results in practical recovery bounds for BCS. Moreover, we discuss the performance of BCS under polynomial-time sparse coding algorithms.Comment: To appear in the 53rd Annual Allerton Conference on Communication, Control and Computing, University of Illinois at Urbana-Champaign, IL, USA, 201

    An Incidence Geometry approach to Dictionary Learning

    Full text link
    We study the Dictionary Learning (aka Sparse Coding) problem of obtaining a sparse representation of data points, by learning \emph{dictionary vectors} upon which the data points can be written as sparse linear combinations. We view this problem from a geometry perspective as the spanning set of a subspace arrangement, and focus on understanding the case when the underlying hypergraph of the subspace arrangement is specified. For this Fitted Dictionary Learning problem, we completely characterize the combinatorics of the associated subspace arrangements (i.e.\ their underlying hypergraphs). Specifically, a combinatorial rigidity-type theorem is proven for a type of geometric incidence system. The theorem characterizes the hypergraphs of subspace arrangements that generically yield (a) at least one dictionary (b) a locally unique dictionary (i.e.\ at most a finite number of isolated dictionaries) of the specified size. We are unaware of prior application of combinatorial rigidity techniques in the setting of Dictionary Learning, or even in machine learning. We also provide a systematic classification of problems related to Dictionary Learning together with various algorithms, their assumptions and performance

    Sample Complexity of Dictionary Learning and other Matrix Factorizations

    Get PDF
    Many modern tools in machine learning and signal processing, such as sparse dictionary learning, principal component analysis (PCA), non-negative matrix factorization (NMF), KK-means clustering, etc., rely on the factorization of a matrix obtained by concatenating high-dimensional vectors from a training collection. While the idealized task would be to optimize the expected quality of the factors over the underlying distribution of training vectors, it is achieved in practice by minimizing an empirical average over the considered collection. The focus of this paper is to provide sample complexity estimates to uniformly control how much the empirical average deviates from the expected cost function. Standard arguments imply that the performance of the empirical predictor also exhibit such guarantees. The level of genericity of the approach encompasses several possible constraints on the factors (tensor product structure, shift-invariance, sparsity \ldots), thus providing a unified perspective on the sample complexity of several widely used matrix factorization schemes. The derived generalization bounds behave proportional to log⁥(n)/n\sqrt{\log(n)/n} w.r.t.\ the number of samples nn for the considered matrix factorization techniques.Comment: to appea
    • 

    corecore