26,924 research outputs found

    Dynamic feature selection for clustering high dimensional data streams

    Get PDF
    open access articleChange in a data stream can occur at the concept level and at the feature level. Change at the feature level can occur if new, additional features appear in the stream or if the importance and relevance of a feature changes as the stream progresses. This type of change has not received as much attention as concept-level change. Furthermore, a lot of the methods proposed for clustering streams (density-based, graph-based, and grid-based) rely on some form of distance as a similarity metric and this is problematic in high-dimensional data where the curse of dimensionality renders distance measurements and any concept of “density” difficult. To address these two challenges we propose combining them and framing the problem as a feature selection problem, specifically a dynamic feature selection problem. We propose a dynamic feature mask for clustering high dimensional data streams. Redundant features are masked and clustering is performed along unmasked, relevant features. If a feature's perceived importance changes, the mask is updated accordingly; previously unimportant features are unmasked and features which lose relevance become masked. The proposed method is algorithm-independent and can be used with any of the existing density-based clustering algorithms which typically do not have a mechanism for dealing with feature drift and struggle with high-dimensional data. We evaluate the proposed method on four density-based clustering algorithms across four high-dimensional streams; two text streams and two image streams. In each case, the proposed dynamic feature mask improves clustering performance and reduces the processing time required by the underlying algorithm. Furthermore, change at the feature level can be observed and tracked

    SOTXTSTREAM: Density-based self-organizing clustering of text streams

    Get PDF
    A streaming data clustering algorithm is presented building upon the density-based selforganizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clustering algorithms use a two-phase clustering approach. In the first phase, a micro-clustering solution is maintained online, while in the second phase, the micro-clustering solution is clustered offline to produce a macro solution. By performing self-organization techniques on micro-clusters in the online phase, SOSTREAM is able to maintain a macro clustering solution in a single phase. Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on several real-world text stream datasets

    Finding and tracking multi-density clusters in an online dynamic data stream

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Change is one of the biggest challenges in dynamic stream mining. From a data-mining perspective, adapting and tracking change is desirable in order to understand how and why change has occurred. Clustering, a form of unsupervised learning, can be used to identify the underlying patterns in a stream. Density-based clustering identifies clusters as areas of high density separated by areas of low density. This paper proposes a Multi-Density Stream Clustering (MDSC) algorithm to address these two problems; the multi-density problem and the problem of discovering and tracking changes in a dynamic stream. MDSC consists of two on-line components; discovered, labelled clusters and an outlier buffer. Incoming points are assigned to a live cluster or passed to the outlier buffer. New clusters are discovered in the buffer using an ant-inspired swarm intelligence approach. The newly discovered cluster is uniquely labelled and added to the set of live clusters. Processed data is subject to an ageing function and will disappear when it is no longer relevant. MDSC is shown to perform favourably to state-of-the-art peer stream-clustering algorithms on a range of real and synthetic data-streams. Experimental results suggest that MDSC can discover qualitatively useful patterns while being scalable and robust to noise

    A Short Survey on Data Clustering Algorithms

    Full text link
    With rapidly increasing data, clustering algorithms are important tools for data analytics in modern research. They have been successfully applied to a wide range of domains; for instance, bioinformatics, speech recognition, and financial analysis. Formally speaking, given a set of data instances, a clustering algorithm is expected to divide the set of data instances into the subsets which maximize the intra-subset similarity and inter-subset dissimilarity, where a similarity measure is defined beforehand. In this work, the state-of-the-arts clustering algorithms are reviewed from design concept to methodology; Different clustering paradigms are discussed. Advanced clustering algorithms are also discussed. After that, the existing clustering evaluation metrics are reviewed. A summary with future insights is provided at the end

    A Fast General-Purpose Clustering Algorithm Based on FPGAs for High-Throughput Data Processing

    Full text link
    We present a fast general-purpose algorithm for high-throughput clustering of data "with a two dimensional organization". The algorithm is designed to be implemented with FPGAs or custom electronics. The key feature is a processing time that scales linearly with the amount of data to be processed. This means that clustering can be performed in pipeline with the readout, without suffering from combinatorial delays due to looping multiple times through all the data. This feature makes this algorithm especially well suited for problems where the data has high density, e.g. in the case of tracking devices working under high-luminosity condition such as those of LHC or Super-LHC. The algorithm is organized in two steps: the first step (core) clusters the data; the second step analyzes each cluster of data to extract the desired information. The current algorithm is developed as a clustering device for modern high-energy physics pixel detectors. However, the algorithm has much broader field of applications. In fact, its core does not specifically rely on the kind of data or detector it is working for, while the second step can and should be tailored for a given application. Applications can thus be foreseen to other detectors and other scientific fields ranging from HEP calorimeters to medical imaging. An additional advantage of this two steps approach is that the typical clustering related calculations (second step) are separated from the combinatorial complications of clustering. This separation simplifies the design of the second step and it enables it to perform sophisticated calculations achieving online-quality in online applications. The algorithm is general purpose in the sense that only minimal assumptions on the kind of clustering to be performed are made.Comment: 11th Frontier Detectors For Frontier Physics conference (2009
    • …
    corecore