4,236 research outputs found

    Communication models for monitoring and mobility verification in mission critical wireless networks

    Get PDF
    Recent technological advances have seen wireless sensor networks emerge as an interesting research topic because of its ability to realize mission critical applications like in military or wildfire detection. The first part of the thesis focuses on the development of a novel communication scheme referred here as a distributed wireless critical information-aware maintenance network (DWCIMN), which is presented for preventive maintenance of network-centric dynamic systems. The proposed communication scheme addresses quality of service (QoS) issues by using a combination of a head-of-the-line queuing scheme, efficient bandwidth allocation, weight-based backoff mechanism, and a distributed power control scheme. A thorough analysis of a head-of-the-line priority queuing scheme is given for a single-server, finite queue with a batch arrival option and user priorities. The scheme is implemented in the Network Simulator (NS-2), and the results demonstrate reduced queuing delays and efficient bandwidth allocation for time-critical data over non time critical data. In the second part, we introduce a unique mobility verification problem in wireless sensor networks wherein the objective is to verify the claimed mobility path of a node in a co-operating mission critical operation between two allies. We address this problem by developing an efficient power-control based mobility verification model. The simulation framework is implemented in Matlab and the results indicate successful detection of altered claimed paths within a certain error bound --Abstract, page iii

    Hierarchical Cluster-Based FIFO Asynchronous Data Transfer Technique for Reducing Congestion for Energy Efficient State Wireless Sensor Network-HAEEW

    Get PDF
    The applications of WSN can be quiet numerous. In applications like battlefield monitoring, grid power generation, health systems, sensors are deployed on large scale. During such deployment, energy efficiency must be proficient, which requires clustering, in the WSN architecture. Clustering architecture requires maintenance of sensor nodes due to alfunctioning of sensor which becomes depleted of energy. As some nodes leaves and some are being replaced, congestion is introduced in the network due the limited processing capability of memory, computations, and bandwidth condition. This paper proposes one of the energy efficient clustering techniques (HAEEW), using asynchronous data transfer (ADT), which has been modeled from data transfer technique (EEHCR), and using hierarchical clustering. Our model uses synchronization in clock time queries in one and each iterations round time, to determine cluster head, and head-set member formation, using Ad hoc on-demand energy aware routing protocols (AOERP) to make decision. In each iteration, the head-set members receives message request from neighboring nodes to confirm their average distance estimation, in which to transmit aggregated data to the base station. In a sensor deployment, which is aimed for data collection, control and management of sensor nodes, play a vital role, where nodes can be adjusted to boost energy in the network life time. We used matlab for simulations analysis of our result

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    Uav-assisted data collection in wireless sensor networks: A comprehensive survey

    Get PDF
    Wireless sensor networks (WSNs) are usually deployed to different areas of interest to sense phenomena, process sensed data, and take actions accordingly. The networks are integrated with many advanced technologies to be able to fulfill their tasks that is becoming more and more complicated. These networks tend to connect to multimedia networks and to process huge data over long distances. Due to the limited resources of static sensor nodes, WSNs need to cooperate with mobile robots such as unmanned ground vehicles (UGVs), or unmanned aerial vehicles (UAVs) in their developments. The mobile devices show their maneuverability, computational and energystorage abilities to support WSNs in multimedia networks. This paper addresses a comprehensive survey of almost scenarios utilizing UAVs and UGVs with strogly emphasising on UAVs for data collection in WSNs. Either UGVs or UAVs can collect data from static sensor nodes in the monitoring fields. UAVs can either work alone to collect data or can cooperate with other UAVs to increase their coverage in their working fields. Different techniques to support the UAVs are addressed in this survey. Communication links, control algorithms, network structures and different mechanisms are provided and compared. Energy consumption or transportation cost for such scenarios are considered. Opening issues and challenges are provided and suggested for the future developments

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Packet Arrival Analysis in Wireless Sensor Networks

    Full text link
    Distributed sensor networks have been discussed for more than 30 years, but the vision of Wireless Sensor Networks (WSNs) has been brought into reality only by the rapid advancements in the areas of sensor design, information technologies, and wireless networks that have paved the way for the proliferation of WSNs. The unique characteristics of sensor networks introduce new challenges, amongst which prolonging the sensor lifetime is the most important. WSNs have seen a tremendous growth in various application areas including health care, environmental monitoring, security, and military purposes despite prominent performance and availability challenges. Clustering plays an important role in enhancement of the life span and scalability of the network, in such applications. Although researchers continue to address these grand challenges, the type of distributions for arrivals at the cluster head and intermediary routing nodes is still an interesting area of investigation. Modelling the behaviour of the networks becomes essential for estimating the performance metrics and further lead to decisions for improving the network performance, hence highlighting the importance of identifying the type of inter-arrival distributions at the cluster head. In this paper, we present extensive discussions on the assumptions of exponential distributions in WSNs, and present numerical results based on Q-Q plots for estimating the arrival distributions. The work is further extended to understand the impact of end-to-end delay and its effect on inter-arrival time distributions, based on the type of medium access control used in WSNs. Future work is also presented on the grounds that such comparisons based on simple eye checks are insufficient. Since in many cases such plots may lead to incorrect conclusions, demanding the necessity for validating the types of distributions. Statistical analysis is necessary to estimate and validate the empirical distributions of the arrivals in WSNs
    • …
    corecore