378 research outputs found

    Medication visualization and cohort specification

    Get PDF

    TEMPORAL DATA EXTRACTION AND QUERY SYSTEM FOR EPILEPSY SIGNAL ANALYSIS

    Get PDF
    The 2016 Epilepsy Innovation Institute (Ei2) community survey reported that unpredictability is the most challenging aspect of seizure management. Effective and precise detection, prediction, and localization of epileptic seizures is a fundamental computational challenge. Utilizing epilepsy data from multiple epilepsy monitoring units can enhance the quantity and diversity of datasets, which can lead to more robust epilepsy data analysis tools. The contributions of this dissertation are two-fold. One is the implementation of a temporal query for epilepsy data; the other is the machine learning approach for seizure detection, seizure prediction, and seizure localization. The three key components of our temporal query interface are: 1) A pipeline for automatically extract European Data Format (EDF) information and epilepsy annotation data from cross-site sources; 2) Data quantity monitoring for Epilepsy temporal data; 3) A web-based annotation query interface for preliminary research and building customized epilepsy datasets. The system extracted and stored about 450,000 epilepsy-related events of more than 2,497 subjects from seven institutes up to September 2019. Leveraging the epilepsy temporal events query system, we developed machine learning models for seizure detection, prediction, and localization. Using 135 extracted features from EEG signals, we trained a channel-based eXtreme Gradient Boosting model to detect seizures on 8-second EEG segments. A long-term EEG recording evaluation shows that the model can detect about 90.34% seizures on an existing EEG dataset with 961 hours of data. The model achieved 89.88% accuracy, 92.32% sensitivity, and 84.76% AUC based on the segments evaluation. We also introduced a transfer learning approach consisting of 1) a base deep learning model pre-trained by ImageNet dataset and 2) customized fully connected layers, to train the patient-specific pre-ictal and inter-ictal data from our database. Two convolutional neural network architectures were evaluated using 53 pre-ictal segments and 265 continuous hours of inter-ictal EEG data. The evaluation shows that our model reached 86.79% sensitivity and 3.38% false-positive rate. Another transfer learning model for seizure localization uses a pre-trained ResNext50 structure and was trained with an image augmentation dataset labeling by fingerprint. Our model achieved 88.22% accuracy, 34.99% sensitivity, 1.02% false-positive rate, and 34.3% positive likelihood rate

    An IoT Platform for Epilepsy Monitoring and Supervising

    Get PDF
    Epilepsy is a chronic neurological disorder with several different types of seizures, some of them characterized by involuntary recurrent convulsions, which have a great impact on the everyday life of the patients. Several solutions have been proposed in the literature to detect this type of seizures and to monitor the patient; however, these approaches lack in ergonomic issues and in the suitable integration with the health system. This research makes an in-depth analysis of the main factors that an epileptic detection and monitoring tool should accomplish. Furthermore, we introduce the architecture for a specific epilepsy detection and monitoring platform, fulfilling these factors. Special attention has been given to the part of the system the patient should wear, providing details of this part of the platform. Finally, a partial implementation has been deployed and several tests have been proposed and carried out in order to make some design decisions

    Designing User Experience in eHealth Applications for Young-Age Epilepsy

    Get PDF
    Epilepsy is one of the most common neurological diseases in the world. One of the problems for families with children with epilepsy is nocturnal seizures: it’s important to prevent them or to promptly intervene, as they can be life-threatening. FightTheStroke foundation supports these families with MirrorHR, a mHealth application for epilepsy self-management. This thesis aimed to analyze the user needs and pain points of parents with children with epilepsy, assess the usability of MirrorHR, and evaluate a new remote monitoring scenario for the Real-Time Monitoring feature of the application. To achieve these objectives, extensive background research was conducted, starting with the more general scope of eHealth, and then exploring in more detail the various aspects surrounding epilepsy and the state of the art of digital solutions for epilepsy self-management and seizure detection. Based on this, a study was conducted on 9 users of the application, which consisted of two semi-structured qualitative interviews, each followed by a post-interview anonymous questionnaire. From the study, user needs and pain points were formulated and divided into 4 categories: Diagnostic journey, Epilepsy management, Educational support, and Parental support; more generic pain points on epilepsy self-management applications were also found and are considered as a separate additional category; good usability of the application was found, but some difficulties encountered by some users were also noted; ultimately, a new remote monitoring scenario was identified, in which MirrorHR monitoring functionality can also be used with the devices of different caregivers and at greater distances than before. A prototype was designed and developed for this scenario. The results of the study, along with the prototype, were positively evaluated by the participants. User needs and pain points provide useful insights for MirrorHR and other epilepsy self-management applications, as well as some more generic pain points may be of value for other mHealth applications. The analysis that led to the development of the identified scenario may be useful for other mHealth application scenarios that also consider children

    A Multi-Tier Distributed fog-based Architecture for Early Prediction of Epileptic Seizures

    Get PDF
    Epilepsy is the fourth most common neurological problem. With 50 million people living with epilepsy worldwide, about one in 26 people will continue experiencing recurring seizures during their lifetime. Epileptic seizures are characterized by uncontrollable movements and can cause loss of awareness. Despite the optimal use of antiepileptic medications, seizures are still difficult to control due to their sudden and unpredictable nature. Such seizures can put the lives of patients and others at risk. For example, seizure attacks while patients are driving could affect their ability to control a vehicle and could result in injuries to the patients as well as others. Notifying patients before the onset of seizures can enable them to avoid risks and minimize accidents, thus, save their lives. Early and accurate prediction of seizures can play a significant role in improving patients’ quality of life and helping doctors to administer medications through providing a historical overview of patient's condition over time. The individual variability and the dynamic disparity in differentiating between the pre-ictal phase (a period before the onset of the seizure) and other seizures phases make the early prediction of seizures a challenging task. Although several research projects have focused on developing a reliable seizure prediction model, numerous challenges still exist and need to be addressed. Most of the existing approaches are not suitable for real-time settings, which requires bio-signals collection and analysis in real-time. Various methods were developed based on the analysis of EEG signals without considering the notification latency and computational cost to support monitoring of multiple patients. Limited approaches were designed based on the analysis of ECG signals. ECG signals can be collected using consumer wearable devices and are suitable for light-weight real-time analysis. Moreover, existing prediction methods were developed based on the analysis of seizure state and ignored the investigation of pre-ictal state. The analysis of the pre-ictal state is essential in the prediction of seizures at an early stage. Therefore, there is a crucial need to design a novel computing model for early prediction of epileptic seizures. This model would greatly assist in improving the patients' quality of lives. This work proposes a multi-tier architecture for early prediction of seizures based on the analysis of two vital signs, namely, Electrocardiography (ECG) and Electroencephalogram (EEG) signals. The proposed architecture comprises of three tiers: (1) sensing at the first tier, (2) lightweight analysis based on ECG signals at the second tier, and (3) deep analysis based on EEG signals at the third tier. The proposed architecture is developed to leverage the potential of fog computing technology at the second tier for a real-time signal analytics and ubiquitous response. The proposed architecture can enable the early prediction of epileptic seizures, reduce the notification latency, and minimize the energy consumption on real-time data transmissions. Moreover, the proposed architecture is designed to allow for both lightweight and extensive analytics, thus make accurate and reliable decisions. The proposed lightweight model is formulated using the analysis of ECG signals to detect the pre-ictal state. The lightweight model utilizes the Least Squares Support Vector Machines (LS-SVM) classifier, while the proposed extensive analytics model analyzes EEG signals and utilizes Deep Belief Network (DBN) to provide an accurate classification of the patient’s state. The performance of the proposed architecture is evaluated in terms of latency minimization and energy consumption in comparison with the cloud. Moreover, the performance of the proposed prediction models is evaluated using three datasets. Various performance metrics were used to investigate the prediction model performance, including: accuracy, sensitivity, specificity, and F1-Measure. The results illustrate the merits of the proposed architecture and show significant improvement in the early prediction of seizures in terms of accuracy, sensitivity, and specificity

    Novel Processing and Transmission Techniques Leveraging Edge Computing for Smart Health Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    EZcap: a novel wearable for real-time automated seizure detection from EEG signals

    Get PDF
    Epileptic seizures present a serious danger to the lives of their victims, rendering them unconscious, lacking control, and may even result in death only a few seconds after onset. This gives rise to a crucial need for an effective seizure detection method that is fast, accurate, and has the potential for mass market adoption. Kriging methods have a good reputation for high accuracy in spatial prediction, hence, their extensive use in geostatistics. This paper demonstrates the successful application of Kriging methods for an effective seizure detection device in an edge computing environment by modeling the brain as a spatial panorama. We hereby propose a novel wearable for real-time automated seizure detection from EEG signals using three different types of Kriging, namely, Simple Kriging, Ordinary Kriging and Universal Kriging. After multiple experiments with electroencephalogram (EEG) signals obtained from seizure patients as well as those from their healthy counterparts, the results reveal that the three Kriging methods performed very well in accuracy, sensitivity and latency of detection. It was found however, that Simple Kriging outperforms the other Kriging methods with a mean seizure detection latency of 0.81 sec, a perfect specificity, an accuracy of 97.50% and a sensitivity of 94.74%. The results in this paper compare well with other seizure detection models in the literature but their excellent seizure detection latency surpasses the performance of most existing works in seizure detection
    • …
    corecore