70,871 research outputs found

    Tractable Simulation of Error Correction with Honest Approximations to Realistic Fault Models

    Full text link
    In previous work, we proposed a method for leveraging efficient classical simulation algorithms to aid in the analysis of large-scale fault tolerant circuits implemented on hypothetical quantum information processors. Here, we extend those results by numerically studying the efficacy of this proposal as a tool for understanding the performance of an error-correction gadget implemented with fault models derived from physical simulations. Our approach is to approximate the arbitrary error maps that arise from realistic physical models with errors that are amenable to a particular classical simulation algorithm in an "honest" way; that is, such that we do not underestimate the faults introduced by our physical models. In all cases, our approximations provide an "honest representation" of the performance of the circuit composed of the original errors. This numerical evidence supports the use of our method as a way to understand the feasibility of an implementation of quantum information processing given a characterization of the underlying physical processes in experimentally accessible examples.Comment: 34 pages, 9 tables, 4 figure

    "Going back to our roots": second generation biocomputing

    Full text link
    Researchers in the field of biocomputing have, for many years, successfully "harvested and exploited" the natural world for inspiration in developing systems that are robust, adaptable and capable of generating novel and even "creative" solutions to human-defined problems. However, in this position paper we argue that the time has now come for a reassessment of how we exploit biology to generate new computational systems. Previous solutions (the "first generation" of biocomputing techniques), whilst reasonably effective, are crude analogues of actual biological systems. We believe that a new, inherently inter-disciplinary approach is needed for the development of the emerging "second generation" of bio-inspired methods. This new modus operandi will require much closer interaction between the engineering and life sciences communities, as well as a bidirectional flow of concepts, applications and expertise. We support our argument by examining, in this new light, three existing areas of biocomputing (genetic programming, artificial immune systems and evolvable hardware), as well as an emerging area (natural genetic engineering) which may provide useful pointers as to the way forward.Comment: Submitted to the International Journal of Unconventional Computin

    Local Fault-tolerant Quantum Computation

    Full text link
    We analyze and study the effects of locality on the fault-tolerance threshold for quantum computation. We analytically estimate how the threshold will depend on a scale parameter r which estimates the scale-up in the size of the circuit due to encoding. We carry out a detailed semi-numerical threshold analysis for concatenated coding using the 7-qubit CSS code in the local and `nonlocal' setting. First, we find that the threshold in the local model for the [[7,1,3]] code has a 1/r dependence, which is in correspondence with our analytical estimate. Second, the threshold, beyond the 1/r dependence, does not depend too strongly on the noise levels for transporting qubits. Beyond these results, we find that it is important to look at more than one level of concatenation in order to estimate the threshold and that it may be beneficial in certain places, like in the transportation of qubits, to do error correction only infrequently.Comment: REVTeX, 44 pages, 19 figures, to appear in Physical Review

    Is error detection helpful on IBM 5Q chips ?

    Full text link
    This paper reports on experiments realized on several IBM 5Q chips which show evidence for the advantage of using error detection and fault-tolerant design of quantum circuits. We show an average improvement of the task of sampling from states that can be fault-tolerantly prepared in the [[4,2,2]][[4,2,2]] code, when using a fault-tolerant technique well suited to the layout of the chip. By showing that fault-tolerant quantum computation is already within our reach, the author hopes to encourage this approach.Comment: 17 pages, 13 figures, 6 table
    • …
    corecore