399 research outputs found

    Data partitioning and load balancing in parallel disk systems

    Get PDF
    Parallel disk systems provide opportunities for exploiting I/O parallelism in two possible ways, namely via inter-request and intra-request parallelism. In this paper we discuss the main issues in performance tuning of such systems, namely striping and load balancing, and show their relationship to response time and throughput. We outline the main components of an intelligent file system that optimizes striping by taking into account the requirements of the applications, and performs load balancing by judicious file allocation and dynamic redistributions of the data when access patterns change. Our system uses simple but effective heuristics that incur only little overhead. We present performance experiments based on synthetic workloads and real-life traces

    Scheduling policies for disks and disk arrays

    Get PDF
    Recent rapid advances of magnetic recording technology have enabled substantial increases in disk capacity. There has been less than 10% improvement annually in the random access time to small data blocks on the disk. Such accesses are very common in OLTP applications, which tend to have stringent response time requirements. Scheduling of disk requests is intended to improve their response time, reduce disk service time, and increase disk access bandwidth with respect to the default FCFS scheduling policy. Shortest Access Time First policy has been shown to outperform other classical disk scheduling policies in numerous studies. Before verifying this conclusion, this dissertation develops an empirical analysis of the SATF policy, and produces a valuable by-product, expressed as x[m] = mp, during the study. Classical scheduling policies and some well-known variations of the SATE policy are re-evaluated, and three extensions are proposed. The performance evaluation uses self-developed simulators containing detailed disk information. The simulators, driven with both synthetic and trace workloads, report the measurements of requests, such as the mean and the 95th percentile of the response times, as well as the measurements of the system, such as the maximum throughput. A comprehensive arrangement of routing and scheduling schemes is presented or mirrored disk systems, or RAIDi. The performance evaluation is based on a twodimensional configuration classification: independent queues (i.e. a router sends the requests to one of the disks as soon as these requests arrive) versus a shared queue (i.e. the requests are held in a common queue at the router and are scheduled to be served); normal data layout versus transposed data layout (i.e. the data stored on the inner cylinders of one disk is duplicated on the outer cylinders of the mirrored disk). The availability of a non-volatile storage or NVS, which allows the processing of write requests to be deferred, is also investigated. Finally, various strategies of mirrored disk declustering are compared against the basic disk mirroring. Their competence of load balancing and their reliability are examined in both normal mode and degraded mode

    Data partitioning and load balancing in parallel disk systems

    Get PDF
    Parallel disk systems provide opportunities for exploiting I/O parallelism in two possible ways, namely via inter-request and intra-request parallelism. In this paper we discuss the main issues in performance tuning of such systems, namely striping and load balancing, and show their relationship to response time and throughput. We outline the main components of an intelligent file system that optimizes striping by taking into account the requirements of the applications, and performs load balancing by judicious file allocation and dynamic redistributions of the data when access patterns change. Our system uses simple but effective heuristics that incur only little overhead. We present performance experiments based on synthetic workloads and real-life traces

    High performance disk array architectures.

    Get PDF
    Yeung Kai-hau, Alan.Thesis (Ph.D.)--Chinese University of Hong Kong, 1995.Includes bibliographical references.ACKNOWLEDGMENTS --- p.ivABSTRACT --- p.vChapter CHAPTER 1 --- Introduction --- p.1Chapter 1.1 --- The Information Age --- p.2Chapter 1.2 --- The Importance of Input/Output --- p.3Chapter 1.3 --- Redundant Arrays of Inexpensive Disks --- p.5Chapter 1.4 --- Outline of the Thesis --- p.7References --- p.8Chapter CHAPTER 2 --- Selective Broadcast Data Distribution Systems --- p.10Chapter 2.1 --- Introduction --- p.11Chapter 2.2 --- The Distributed Architecture --- p.12Chapter 2.3 --- Mean Block Acquisition Delay for Uniform Request Distribution --- p.16Chapter 2.4 --- Mean Block Acquisition Delay for General Request Distributions --- p.21Chapter 2.5 --- Optimal Choice of Block Sizes --- p.24Chapter 2.6 --- Chapter Summary --- p.25References --- p.26Chapter CHAPTER 3 --- Dynamic Multiple Parity Disk Arrays --- p.28Chapter 3.1 --- Introduction --- p.29Chapter 3.2 --- DMP Disk Array --- p.31Chapter 3.3 --- Average Delay --- p.37Chapter 3.4 --- Maximum Throughput --- p.47Chapter 3.5 --- Simulation with Precise Disk Model --- p.53Chapter 3.6 --- Chapter Summary --- p.58References --- p.59Appendix --- p.61Chapter CHAPTER 4 --- Dynamic Parity Logging Disk Arrays --- p.69Chapter 4.1 --- Introduction --- p.70Chapter 4.2 --- DPL Disk Array Architecture --- p.73Chapter 4.3 --- DPL Disk Array Operation --- p.79Chapter 4.4 --- Performance of DPL Disk Array --- p.83Chapter 4.5 --- Chapter Summary --- p.91References --- p.92Appendix --- p.94Chapter CHAPTER 5 --- Performance Analysis of Mirrored Disk Array --- p.101Chapter 5.1 --- Introduction --- p.102Chapter 5.2 --- Queueing Model --- p.103Chapter 5.3 --- Delay Analysis --- p.104Chapter 5.4 --- Numerical Examples and Simulation Results --- p.108References --- p.109Chapter CHAPTER 6 --- State Reduction in the Exact Analysis of Fork/Join Queues --- p.110Chapter 6.1 --- Introduction --- p.111Chapter 6.2 --- State Reduction For Closed Fork/Join Queueing Systems --- p.113Chapter 6.3 --- Extension To Open Fork/Join Queueing Systems --- p.118Chapter 6.4 --- Chapter Summary --- p.122References --- p.123Chapter CHAPTER 7 --- Conclusion and Future Research --- p.124Chapter 7.1 --- Summary --- p.125Chapter 7.2 --- Future Researches --- p.12

    MINA - a tool for MSC-based performance analysis and simulation of distributed systems

    Get PDF
    Performance analysis can help to address quantitative system analysis from the early stages of the system development life cycle, e.g., to compare design alternatives or to identify system bottlenecks. This thesis addresses the problem of performance evaluation of distributed systems by employing a viewpoint where analytical and simulative evaluation techniques are unified in the MINA tool to make use of both techniques. We suggest a modelling tool chain to evaluate the performance of distributed systems like computer and communication systems based on an MSC description of the system. MSC-based performance evaluation of distributed systems is an approach that uses performance models, which are based on an MSC description of a system to evaluate system performance measures. To determine the system performance, these descriptions can be extended by notions for time consumption and resource usage and afterwards be included in a system performance model. Based on this unique model specification, analytical as well as simulative techniques can be applied to achieve either quick mean value results by queueing networks analysis or confidence intervals or transient measures by simulation. The applicability to real world systems and the advantages of the tool has been demonstrated by a large application example in the field of mobile communication systems, and its effectiveness has been evaluated by comparing it with other approaches. The experimental results show that the tool is scalable, the way it can model simple as well as complex systems. Moreover, it is straightforward and has the ability to find reasonable solutions in an efficient manner

    Performance evaluation of distributed systems with unbalanced flows : an analysis of the INFOPLEX data storage hierarchy

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, 1985.MICROFICHE COPY AVAILABLE IN ARCHIVES AND DEWEY.Bibliography: leaves 165-171.by Yng-Yuh Richard Wang.Ph.D

    Queueing network models of zoned RAID system performance

    No full text
    RAID systems are widely deployed, both as standalone storage solutions and as the building blocks of modern virtualised storage platforms. An accurate model of RAID system performance is therefore critical towards fulfilling quality of service constraints for fast, reliable storage. This thesis presents techniques and tools that model response times in zoned RAID systems. The inputs to this analysis are a specified I/O request arrival rate, an I/O request access profile, a given RAID configuration and physical disk parameters. The primary output of this analysis is an approximation to the cumulative distribution function of I/O request response time. From this, it is straightforward to calculate response time quantiles, as well as the mean, variance and higher moments of I/O request response time. The model supports RAID levels 0, 01, 10 and 5 and a variety of workload types. Our RAID model is developed in a bottom-up hierarchical fashion. We begin by modelling each zoned disk drive in the array as a single M/G/1 queue. The service time is modelled as the sum of the random variables of seek time, rotational latency and data transfer time. In doing so, we take into account the properties of zoned disks. We then abstract a RAID system as a fork-join queueing network. This comprises several queues, each of which represents one disk drive in the array. We tailor our basic fork-join approximation to account for the I/O request patterns associated with particular request types and request sizes under different RAID levels. We extend the RAID and disk models to support bulk arrivals, requests of different sizes and scheduling algorithms that reorder queueing requests to minimise disk head positioning time. Finally, we develop a corresponding simulation to improve and validate the model. To test the accuracy of all our models, we validate them against disk drive and RAID device measurements throughout

    Performance of Computer Systems; Proceedings of the 4th International Symposium on Modelling and Performance Evaluation of Computer Systems, Vienna, Austria, February 6-8, 1979

    Get PDF
    These proceedings are a collection of contributions to computer system performance, selected by the usual refereeing process from papers submitted to the symposium, as well as a few invited papers representing significant novel contributions made during the last year. They represent the thrust and vitality of the subject as well as its capacity to identify important basic problems and major application areas. The main methodological problems appear in the underlying queueing theoretic aspects, in the deterministic analysis of waiting time phenomena, in workload characterization and representation, in the algorithmic aspects of model processing, and in the analysis of measurement data. Major areas for applications are computer architectures, data bases, computer networks, and capacity planning. The international importance of the area of computer system performance was well reflected at the symposium by participants from 19 countries. The mixture of participants was also evident in the institutions which they represented: 35% from universities, 25% from governmental research organizations, but also 30% from industry and 10% from non-research government bodies. This proves that the area is reaching a stage of maturity where it can contribute directly to progress in practical problems

    Dependence-driven techniques in system design

    Get PDF
    Burstiness in workloads is often found in multi-tier architectures, storage systems, and communication networks. This feature is extremely important in system design because it can significantly degrade system performance and availability. This dissertation focuses on how to use knowledge of burstiness to develop new techniques and tools for performance prediction, scheduling, and resource allocation under bursty workload conditions.;For multi-tier enterprise systems, burstiness in the service times is catastrophic for performance. Via detailed experimentation, we identify the cause of performance degradation on the persistent bottleneck switch among various servers. This results in an unstable behavior that cannot be captured by existing capacity planning models. In this dissertation, beyond identifying the cause and effects of bottleneck switch in multi-tier systems, we also propose modifications to the classic TPC-W benchmark to emulate bursty arrivals in multi-tier systems.;This dissertation also demonstrates how burstiness can be used to improve system performance. Two dependence-driven scheduling policies, SWAP and ALoC, are developed. These general scheduling policies counteract burstiness in workloads and maintain high availability by delaying selected requests that contribute to burstiness. Extensive experiments show that both SWAP and ALoC achieve good estimates of service times based on the knowledge of burstiness in the service process. as a result, SWAP successfully approximates the shortest job first (SJF) scheduling without requiring a priori information of job service times. ALoC adaptively controls system load by infinitely delaying only a small fraction of the incoming requests.;The knowledge of burstiness can also be used to forecast the length of idle intervals in storage systems. In practice, background activities are scheduled during system idle times. The scheduling of background jobs is crucial in terms of the performance degradation of foreground jobs and the utilization of idle times. In this dissertation, new background scheduling schemes are designed to determine when and for how long idle times can be used for serving background jobs, without violating predefined performance targets of foreground jobs. Extensive trace-driven simulation results illustrate that the proposed schemes are effective and robust in a wide range of system conditions. Furthermore, if there is burstiness within idle times, then maintenance features like disk scrubbing and intra-disk data redundancy can be successfully scheduled as background activities during idle times
    • …
    corecore