11,087 research outputs found

    Iterative Bayesian Learning for Crowdsourced Regression

    Full text link
    Crowdsourcing platforms emerged as popular venues for purchasing human intelligence at low cost for large volume of tasks. As many low-paid workers are prone to give noisy answers, a common practice is to add redundancy by assigning multiple workers to each task and then simply average out these answers. However, to fully harness the wisdom of the crowd, one needs to learn the heterogeneous quality of each worker. We resolve this fundamental challenge in crowdsourced regression tasks, i.e., the answer takes continuous labels, where identifying good or bad workers becomes much more non-trivial compared to a classification setting of discrete labels. In particular, we introduce a Bayesian iterative scheme and show that it provably achieves the optimal mean squared error. Our evaluations on synthetic and real-world datasets support our theoretical results and show the superiority of the proposed scheme

    Computational periscopy with an ordinary digital camera

    Full text link
    Computing the amounts of light arriving from different directions enables a diffusely reflecting surface to play the part of a mirror in a periscopeā€”that is, perform non-line-of-sight imaging around an obstruction. Because computational periscopy has so far depended on light-travel distances being proportional to the times of flight, it has mostly been performed with expensive, specialized ultrafast optical systems^1,2,3,4,5,6,7,8,9,10,11,12. Here we introduce a two-dimensional computational periscopy technique that requires only a single photograph captured with an ordinary digital camera. Our technique recovers the position of an opaque object and the scene behind (but not completely obscured by) the object, when both the object and scene are outside the line of sight of the camera, without requiring controlled or time-varying illumination. Such recovery is based on the visible penumbra of the opaque object having a linear dependence on the hidden scene that can be modelled through ray optics. Non-line-of-sight imaging using inexpensive, ubiquitous equipment may have considerable value in monitoring hazardous environments, navigation and detecting hidden adversaries.We thank F. Durand, W. T. Freeman, Y. Ma, J. Rapp, J. H. Shapiro, A. Torralba, F. N. C. Wong and G. W. Wornell for discussions. This work was supported by the Defense Advanced Research Projects Agency (DARPA) REVEAL Program contract number HR0011-16-C-0030. (HR0011-16-C-0030 - Defense Advanced Research Projects Agency (DARPA) REVEAL Program)Accepted manuscrip

    Learning to Infer Graphics Programs from Hand-Drawn Images

    Full text link
    We introduce a model that learns to convert simple hand drawings into graphics programs written in a subset of \LaTeX. The model combines techniques from deep learning and program synthesis. We learn a convolutional neural network that proposes plausible drawing primitives that explain an image. These drawing primitives are like a trace of the set of primitive commands issued by a graphics program. We learn a model that uses program synthesis techniques to recover a graphics program from that trace. These programs have constructs like variable bindings, iterative loops, or simple kinds of conditionals. With a graphics program in hand, we can correct errors made by the deep network, measure similarity between drawings by use of similar high-level geometric structures, and extrapolate drawings. Taken together these results are a step towards agents that induce useful, human-readable programs from perceptual input

    Learning sparse representations of depth

    Full text link
    This paper introduces a new method for learning and inferring sparse representations of depth (disparity) maps. The proposed algorithm relaxes the usual assumption of the stationary noise model in sparse coding. This enables learning from data corrupted with spatially varying noise or uncertainty, typically obtained by laser range scanners or structured light depth cameras. Sparse representations are learned from the Middlebury database disparity maps and then exploited in a two-layer graphical model for inferring depth from stereo, by including a sparsity prior on the learned features. Since they capture higher-order dependencies in the depth structure, these priors can complement smoothness priors commonly used in depth inference based on Markov Random Field (MRF) models. Inference on the proposed graph is achieved using an alternating iterative optimization technique, where the first layer is solved using an existing MRF-based stereo matching algorithm, then held fixed as the second layer is solved using the proposed non-stationary sparse coding algorithm. This leads to a general method for improving solutions of state of the art MRF-based depth estimation algorithms. Our experimental results first show that depth inference using learned representations leads to state of the art denoising of depth maps obtained from laser range scanners and a time of flight camera. Furthermore, we show that adding sparse priors improves the results of two depth estimation methods: the classical graph cut algorithm by Boykov et al. and the more recent algorithm of Woodford et al.Comment: 12 page
    • ā€¦
    corecore