220,158 research outputs found

    A clinical support system based on quality of life estimation

    Get PDF
    Quality of life is a concept influenced by social, economic, psychological, spiritual or medical state factors. More specifically, the perceived quality of an individual's daily life is an assessment of their well-being or lack of it. In this context, information technologies may help on the management of services for healthcare of chronic patients such as estimating the patient quality of life and helping the medical staff to take appropriate measures to increase each patient quality of life. This paper describes a Quality of Life estimation system developed using information technologies and the application of data mining algorithms to access the information of clinical data of patients with cancer from Otorhinolaryngology and Head and Neck services of an oncology institution. The system was evaluated with a sample composed of 3013 patients. The results achieved show that there are variables that may be significant predictors for the Quality of Life of the patient: years of smoking (p value 0.049) and size of the tumor (p value < 0.001). In order to assign the variables to the classification of the quality of life the best accuracy was obtained by applying the John Platt's sequential minimal optimization algorithm for training a support vector classifier. In conclusion data mining techniques allow having access to patients additional information helping the physicians to be able to know the quality of life and produce a well-informed clinical decision

    Information and communication technology solutions for outdoor navigation in dementia

    Get PDF
    INTRODUCTION: Information and communication technology (ICT) is potentially mature enough to empower outdoor and social activities in dementia. However, actual ICT-based devices have limited functionality and impact, mainly limited to safety. What is an ideal operational framework to enhance this field to support outdoor and social activities? METHODS: Review of literature and cross-disciplinary expert discussion. RESULTS: A situation-aware ICT requires a flexible fine-tuning by stakeholders of system usability and complexity of function, and of user safety and autonomy. It should operate by artificial intelligence/machine learning and should reflect harmonized stakeholder values, social context, and user residual cognitive functions. ICT services should be proposed at the prodromal stage of dementia and should be carefully validated within the life space of users in terms of quality of life, social activities, and costs. DISCUSSION: The operational framework has the potential to produce ICT and services with high clinical impact but requires substantial investment

    A cost engine system for estimating whole-life cycle cost of long-term digital preservation activities

    Get PDF
    This research paper presents a cost engine system that estimates the whole life cycle cost of long-term digital preservation (LTDP) activities using cloud-based technologies. A qualitative research methodology has been employed and the activity based costing (ABC) technique has been used to develop the cost model. The unified modelling language (UML) notation and the object oriented paradigm (OOP) are utilised to design the architecture of the software system. In addition, the service oriented architecture (SOA) style has been used to deploy the function of the cost engine as a web service in order to ensure its accessibility over the web. The cost engine is a module that is part of a larger digital preservation system and has been validated qualitatively through experts’ opinion. Its benefits are realised in the accurate and detailed estimation of cost for companies wishing to employ LTDP activities

    Development of a patient-reported palliative care-specific health classification system: the POS-E

    Get PDF
    BackgroundGeneric preference-based measures are commonly used to estimate quality-adjusted life-years (QALYs) to inform resource-allocation decisions. However, concerns have been raised that generic measures may be inappropriate in palliative care.ObjectiveOur objective was to derive a health-state classification system that is amenable to valuation from the ten-item Palliative Care Outcome Scale (POS), a widely used patient-reported outcome measure in palliative care.MethodsThe dimensional structure of the original POS was assessed using factor analysis. Item performance was assessed, using Rasch analysis and psychometric criteria, to enable the selection of items that represent the dimensions covered by the POS. Data from six studies of patients receiving palliative care were combined (N = 1011) and randomly split into two halves for development and validation. Analysis was undertaken on the development data, and results were validated by repeating the analysis with the validation dataset.ResultsFollowing Rasch and factor analyses, a classification system of seven items was derived. Each item had two to three levels. Rasch threshold map helped identify a set of 14 plausible health states that can be used for the valuation of the instrument to derive a preference-based index.ConclusionCombining factor analysis and Rasch analysis with psychometric criteria provides a valid method of constructing a classification system for a palliative care-specific preference-based measure. The next stage is to obtain preference weights so the measure can be used in economic evaluations in palliative care

    Fuzzy rule-based system applied to risk estimation of cardiovascular patients

    Get PDF
    Cardiovascular decision support is one area of increasing research interest. On-going collaborations between clinicians and computer scientists are looking at the application of knowledge discovery in databases to the area of patient diagnosis, based on clinical records. A fuzzy rule-based system for risk estimation of cardiovascular patients is proposed. It uses a group of fuzzy rules as a knowledge representation about data pertaining to cardiovascular patients. Several algorithms for the discovery of an easily readable and understandable group of fuzzy rules are formalized and analysed. The accuracy of risk estimation and the interpretability of fuzzy rules are discussed. Our study shows, in comparison to other algorithms used in knowledge discovery, that classifcation with a group of fuzzy rules is a useful technique for risk estimation of cardiovascular patients. © 2013 Old City Publishing, Inc

    Multilevel Weighted Support Vector Machine for Classification on Healthcare Data with Missing Values

    Full text link
    This work is motivated by the needs of predictive analytics on healthcare data as represented by Electronic Medical Records. Such data is invariably problematic: noisy, with missing entries, with imbalance in classes of interests, leading to serious bias in predictive modeling. Since standard data mining methods often produce poor performance measures, we argue for development of specialized techniques of data-preprocessing and classification. In this paper, we propose a new method to simultaneously classify large datasets and reduce the effects of missing values. It is based on a multilevel framework of the cost-sensitive SVM and the expected maximization imputation method for missing values, which relies on iterated regression analyses. We compare classification results of multilevel SVM-based algorithms on public benchmark datasets with imbalanced classes and missing values as well as real data in health applications, and show that our multilevel SVM-based method produces fast, and more accurate and robust classification results.Comment: arXiv admin note: substantial text overlap with arXiv:1503.0625

    Mapping the disease-specific LupusQoL to the SF-6D

    Get PDF
    Purpose To derive a mapping algorithm to predict SF-6D utility scores from the non-preference-based LupusQoL and test the performance of the developed algorithm on a separate independent validation data set. Method LupusQoL and SF-6D data were collected from 320 patients with systemic lupus erythematosus (SLE) attending routine rheumatology outpatient appointments at seven centres in the UK. Ordinary least squares (OLS) regression was used to estimate models of increasing complexity in order to predict individuals’ SF-6D utility scores from their responses to the LupusQoL questionnaire. Model performance was judged on predictive ability through the size and pattern of prediction errors generated. The performance of the selected model was externally validated on an independent data set containing 113 female SLE patients who had again completed both the LupusQoL and SF-36 questionnaires. Results Four of the eight LupusQoL domains (physical health, pain, emotional health, and fatigue) were selected as dependent variables in the final model. Overall model fit was good, with R2 0.7219, MAE 0.0557, and RMSE 0.0706 when applied to the estimation data set, and R2 0.7431, MAE 0.0528, and RMSE 0.0663 when applied to the validation sample. Conclusion This study provides a method by which health state utility values can be estimated from patient responses to the non-preference-based LupusQoL, generalisable beyond the data set upon which it was estimated. Despite concerns over the use of OLS to develop mapping algorithms, we find this method to be suitable in this case due to the normality of the SF-6D data

    Smoking and health-related quality of life in English general population: Implications for economic evaluations

    Get PDF
    Copyright @ 2012 Vogl et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.Background: Little is known as to how health-related quality of life (HRQoL) when measured by generic instruments such as EQ-5D differ across smokers, ex-smokers and never-smokers in the general population; whether the overall pattern of this difference remain consistent in each domain of HRQoL; and what implications this variation, if any, would have for economic evaluations of tobacco control interventions. Methods: Using the 2006 round of Health Survey for England data (n = 13,241), this paper aims to examine the impact of smoking status on health-related quality of life in English population. Depending upon the nature of the EQ-5D data (i.e. tariff or domains), linear or logistic regression models were fitted to control for biology, clinical conditions, socio-economic background and lifestyle factors that an individual may have regardless of their smoking status. Age- and gender-specific predicted values according to smoking status are offered as the potential 'utility' values to be used in future economic evaluation models. Results: The observed difference of 0.1100 in EQ-5D scores between never-smokers (0.8839) and heavy-smokers (0.7739) reduced to 0.0516 after adjusting for biological, clinical, lifestyle and socioeconomic conditions. Heavy-smokers, when compared with never-smokers, were significantly more likely to report some/severe problems in all five domains - mobility (67%), self-care (70%), usual activity (42%), pain/discomfort (46%) and anxiety/depression (86%) -. 'Utility' values by age and gender for each category of smoking are provided to be used in the future economic evaluations. Conclusion: Smoking is significantly and negatively associated with health-related quality of life in English general population and the magnitude of this association is determined by the number of cigarettes smoked. The varying degree of this association, captured through instruments such as EQ-5D, may need to be fed into the design of future economic evaluations where the intervention being evaluated affects (e.g. tobacco control) or is affected (e.g. treatment for lung cancer) by individual's (or patients') smoking status
    • 

    corecore