8,346 research outputs found

    An incremental approach to genetic algorithms based classification

    Get PDF
    Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multi-agent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an “integration” operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed

    Incremental multiple objective genetic algorithms

    Get PDF
    This paper presents a new genetic algorithm approach to multi-objective optimization problemsIncremental Multiple Objective Genetic Algorithms (IMOGA). Different from conventional MOGA methods, it takes each objective into consideration incrementally. The whole evolution is divided into as many phases as the number of objectives, and one more objective is considered in each phase. Each phase is composed of two stages: first, an independent population is evolved to optimize one specific objective; second, the better-performing individuals from the evolved single-objective population and the multi-objective population evolved in the last phase are joined together by the operation of integration. The resulting population then becomes an initial multi-objective population, to which a multi-objective evolution based on the incremented objective set is applied. The experiment results show that, in most problems, the performance of IMOGA is better than that of three other MOGAs, NSGA-II, SPEA and PAES. IMOGA can find more solutions during the same time span, and the quality of solutions is better

    Evolutionary design of nearest prototype classifiers

    Get PDF
    In pattern classification problems, many works have been carried out with the aim of designing good classifiers from different perspectives. These works achieve very good results in many domains. However, in general they are very dependent on some crucial parameters involved in the design. These parameters have to be found by a trial and error process or by some automatic methods, like heuristic search and genetic algorithms, that strongly decrease the performance of the method. For instance, in nearest prototype approaches, main parameters are the number of prototypes to use, the initial set, and a smoothing parameter. In this work, an evolutionary approach based on Nearest Prototype Classifier (ENPC) is introduced where no parameters are involved, thus overcoming all the problems that classical methods have in tuning and searching for the appropiate values. The algorithm is based on the evolution of a set of prototypes that can execute several operators in order to increase their quality in a local sense, and with a high classification accuracy emerging for the whole classifier. This new approach has been tested using four different classical domains, including such artificial distributions as spiral and uniform distibuted data sets, the Iris Data Set and an application domain about diabetes. In all the cases, the experiments show successfull results, not only in the classification accuracy, but also in the number and distribution of the prototypes achieved.Publicad

    Automating biomedical data science through tree-based pipeline optimization

    Full text link
    Over the past decade, data science and machine learning has grown from a mysterious art form to a staple tool across a variety of fields in academia, business, and government. In this paper, we introduce the concept of tree-based pipeline optimization for automating one of the most tedious parts of machine learning---pipeline design. We implement a Tree-based Pipeline Optimization Tool (TPOT) and demonstrate its effectiveness on a series of simulated and real-world genetic data sets. In particular, we show that TPOT can build machine learning pipelines that achieve competitive classification accuracy and discover novel pipeline operators---such as synthetic feature constructors---that significantly improve classification accuracy on these data sets. We also highlight the current challenges to pipeline optimization, such as the tendency to produce pipelines that overfit the data, and suggest future research paths to overcome these challenges. As such, this work represents an early step toward fully automating machine learning pipeline design.Comment: 16 pages, 5 figures, to appear in EvoBIO 2016 proceeding

    Genetic algorithms

    Get PDF
    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology

    Feature selection for modular GA-based classification

    Get PDF
    Genetic algorithms (GAs) have been used as conventional methods for classifiers to adaptively evolve solutions for classification problems. Feature selection plays an important role in finding relevant features in classification. In this paper, feature selection is explored with modular GA-based classification. A new feature selection technique, Relative Importance Factor (RIF), is proposed to find less relevant features in the input domain of each class module. By removing these features, it is aimed to reduce the classification error and dimensionality of classification problems. Benchmark classification data sets are used to evaluate the proposed approach. The experiment results show that RIF can be used to find less relevant features and help achieve lower classification error with the feature space dimension reduced

    On the automated extraction of regression knowledge from databases

    Get PDF
    The advent of inexpensive, powerful computing systems, together with the increasing amount of available data, conforms one of the greatest challenges for next-century information science. Since it is apparent that much future analysis will be done automatically, a good deal of attention has been paid recently to the implementation of ideas and/or the adaptation of systems originally developed in machine learning and other computer science areas. This interest seems to stem from both the suspicion that traditional techniques are not well-suited for large-scale automation and the success of new algorithmic concepts in difficult optimization problems. In this paper, I discuss a number of issues concerning the automated extraction of regression knowledge from databases. By regression knowledge is meant quantitative knowledge about the relationship between a vector of predictors or independent variables (x) and a scalar response or dependent variable (y). A number of difficulties found in some well-known tools are pointed out, and a flexible framework avoiding many such difficulties is described and advocated. Basic features of a new tool pursuing this direction are reviewed
    corecore