763 research outputs found

    A Classification of Remote Sensing Image Based on Improved Compound Kernels of Svm

    Full text link

    GETNET: A General End-to-end Two-dimensional CNN Framework for Hyperspectral Image Change Detection

    Full text link
    Change detection (CD) is an important application of remote sensing, which provides timely change information about large-scale Earth surface. With the emergence of hyperspectral imagery, CD technology has been greatly promoted, as hyperspectral data with the highspectral resolution are capable of detecting finer changes than using the traditional multispectral imagery. Nevertheless, the high dimension of hyperspectral data makes it difficult to implement traditional CD algorithms. Besides, endmember abundance information at subpixel level is often not fully utilized. In order to better handle high dimension problem and explore abundance information, this paper presents a General End-to-end Two-dimensional CNN (GETNET) framework for hyperspectral image change detection (HSI-CD). The main contributions of this work are threefold: 1) Mixed-affinity matrix that integrates subpixel representation is introduced to mine more cross-channel gradient features and fuse multi-source information; 2) 2-D CNN is designed to learn the discriminative features effectively from multi-source data at a higher level and enhance the generalization ability of the proposed CD algorithm; 3) A new HSI-CD data set is designed for the objective comparison of different methods. Experimental results on real hyperspectral data sets demonstrate the proposed method outperforms most of the state-of-the-arts

    Optimal Deep Convolutional Neural Network based Fusion Model for Soil Nutrient Analysis

    Get PDF
    The vast majority of people in India, agriculture is their main line of work, and it has a large economic impact.. Soil is important for supplying vital nutrients to crops for better yield. Determining soil nutrients is certainly essential for selecting appropriate crops and monitoring growth. Common methods used by agriculturalists are inadequate to satisfy increasing demands and have to obstruct cultivating soil. For a better crop yield, agriculturalists must have an awareness regarding the soil nutrients for a specific crop. There comes a need for using Deep learning methods in soil analysis that would help farmers in the domain. This study introduces an Optimal Deep Convolutional Neural Network Fusion Model for Soil nutrient Type Classification (ODCNNF-STC) technique. The presented ODCNNF-STC technique examines the input soil images to classify them into different nutrients present in the soil. In this approach, the noise present in the soil images are initially filtered using a bilateral filter (BF) followed by contrast enhancement. The preprocessed soil images are fed to the model formed by the fusion of DenseNet201 and InceptionResNetV2 models extracting the soil images that can successfully differentiate soil nutrients. Finally, classification of soil nutrients were performed by three classifiers namely extreme learning machine (ELM), RMSProp optimizer-based 1DCNN, and RMSProp optimizer-based Stacked Auto Encoder (SAE). The experimental validation of ODCNNF-STC method is examined on real-time dataset of soil images with a maximum accuracy of 99.39% over recent methods

    Feature extraction and classification for hyperspectral remote sensing images

    Get PDF
    Recent advances in sensor technology have led to an increased availability of hyperspectral remote sensing data at very high both spectral and spatial resolutions. Many techniques are developed to explore the spectral information and the spatial information of these data. In particular, feature extraction (FE) aimed at reducing the dimensionality of hyperspectral data while keeping as much spectral information as possible is one of methods to preserve the spectral information, while morphological profile analysis is the most popular methods used to explore the spatial information. Hyperspectral sensors collect information as a set of images represented by hundreds of spectral bands. While offering much richer spectral information than regular RGB and multispectral images, the high dimensional hyperspectal data creates also a challenge for traditional spectral data processing techniques. Conventional classification methods perform poorly on hyperspectral data due to the curse of dimensionality (i.e. the Hughes phenomenon: for a limited number of training samples, the classification accuracy decreases as the dimension increases). Classification techniques in pattern recognition typically assume that there are enough training samples available to obtain reasonably accurate class descriptions in quantitative form. However, the assumption that enough training samples are available to accurately estimate the class description is frequently not satisfied for hyperspectral remote sensing data classification, because the cost of collecting ground-truth of observed data can be considerably difficult and expensive. In contrast, techniques making accurate estimation by using only small training samples can save time and cost considerably. The small sample size problem therefore becomes a very important issue for hyperspectral image classification. Very high-resolution remotely sensed images from urban areas have recently become available. The classification of such images is challenging because urban areas often comprise a large number of different surface materials, and consequently the heterogeneity of urban images is relatively high. Moreover, different information classes can be made up of spectrally similar surface materials. Therefore, it is important to combine spectral and spatial information to improve the classification accuracy. In particular, morphological profile analysis is one of the most popular methods to explore the spatial information of the high resolution remote sensing data. When using morphological profiles (MPs) to explore the spatial information for the classification of hyperspectral data, one should consider three important issues. Firstly, classical morphological openings and closings degrade the object boundaries and deform the object shapes, while the morphological profile by reconstruction leads to some unexpected and undesirable results (e.g. over-reconstruction). Secondly, the generated MPs produce high-dimensional data, which may contain redundant information and create a new challenge for conventional classification methods, especially for the classifiers which are not robust to the Hughes phenomenon. Last but not least, linear features, which are used to construct MPs, lose too much spectral information when extracted from the original hyperspectral data. In order to overcome these problems and improve the classification results, we develop effective feature extraction algorithms and combine morphological features for the classification of hyperspectral remote sensing data. The contributions of this thesis are as follows. As the first contribution of this thesis, a novel semi-supervised local discriminant analysis (SELD) method is proposed for feature extraction in hyperspectral remote sensing imagery, with improved performance in both ill-posed and poor-posed conditions. The proposed method combines unsupervised methods (Local Linear Feature Extraction Methods (LLFE)) and supervised method (Linear Discriminant Analysis (LDA)) in a novel framework without any free parameters. The underlying idea is to design an optimal projection matrix, which preserves the local neighborhood information inferred from unlabeled samples, while simultaneously maximizing the class discrimination of the data inferred from the labeled samples. Our second contribution is the application of morphological profiles with partial reconstruction to explore the spatial information in hyperspectral remote sensing data from the urban areas. Classical morphological openings and closings degrade the object boundaries and deform the object shapes. Morphological openings and closings by reconstruction can avoid this problem, but this process leads to some undesirable effects. Objects expected to disappear at a certain scale remain present when using morphological openings and closings by reconstruction, which means that object size is often incorrectly represented. Morphological profiles with partial reconstruction improve upon both classical MPs and MPs with reconstruction. The shapes of objects are better preserved than classical MPs and the size information is preserved better than in reconstruction MPs. A novel semi-supervised feature extraction framework for dimension reduction of generated morphological profiles is the third contribution of this thesis. The morphological profiles (MPs) with different structuring elements and a range of increasing sizes of morphological operators produce high-dimensional data. These high-dimensional data may contain redundant information and create a new challenge for conventional classification methods, especially for the classifiers which are not robust to the Hughes phenomenon. To the best of our knowledge the use of semi-supervised feature extraction methods for the generated morphological profiles has not been investigated yet. The proposed generalized semi-supervised local discriminant analysis (GSELD) is an extension of SELD with a data-driven parameter. In our fourth contribution, we propose a fast iterative kernel principal component analysis (FIKPCA) to extract features from hyperspectral images. In many applications, linear FE methods, which depend on linear projection, can result in loss of nonlinear properties of the original data after reduction of dimensionality. Traditional nonlinear methods will cause some problems on storage resources and computational load. The proposed method is a kernel version of the Candid Covariance-Free Incremental Principal Component Analysis, which estimates the eigenvectors through iteration. Without performing eigen decomposition on the Gram matrix, our approach can reduce the space complexity and time complexity greatly. Our last contribution constructs MPs with partial reconstruction on nonlinear features. Traditional linear features, on which the morphological profiles usually are built, lose too much spectral information. Nonlinear features are more suitable to describe higher order complex and nonlinear distributions. In particular, kernel principal components are among the nonlinear features we used to built MPs with partial reconstruction, which led to significant improvement in terms of classification accuracies. The experimental analysis performed with the novel techniques developed in this thesis demonstrates an improvement in terms of accuracies in different fields of application when compared to other state of the art methods

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references

    Advanced imaging and data mining technologies for medical and food safety applications

    Get PDF
    As one of the most fast-developing research areas, biological imaging and image analysis receive more and more attentions, and have been already widely applied in many scientific fields including medical diagnosis and food safety inspection. To further investigate such a very interesting area, this research is mainly focused on advanced imaging and pattern recognition technologies in both medical and food safety applications, which include 1) noise reduction of ultra-low-dose multi-slice helical CT imaging for early lung cancer screening, and 2) automated discrimination between walnut shell and meat under hyperspectral florescence imaging. In the medical imaging and diagnosis area, because X-ray computed tomography (CT) has been applied to screen large populations for early lung cancer detection during the last decade, more and more attentions have been paid to studying low-dose, even ultra-low-dose X-ray CTs. However, reducing CT radiation exposure inevitably increases the noise level in the sinogram, thereby degrading the quality of reconstructed CT images. Thus, how to reduce the noise levels in the low-dose CT images becomes a meaningful topic. In this research, a nonparametric smoothing method with block based thin plate smoothing splines and the roughness penalty was introduced to restore the ultra-low-dose helical CT raw data, which was acquired under 120 kVp / 10 mAs protocol. The objective thorax image quality evaluation was first conducted to assess the image quality and noise level of proposed method. A web-based subjective evaluation system was also built for the total of 23 radiologists to compare proposed approach with traditional sinogram restoration method. Both objective and subjective evaluation studies showed the effectiveness of proposed thin-plate based nonparametric regression method in sinogram restoration of multi-slice helical ultra-low-dose CT. In food quality inspection area, automated discrimination between walnut shell and meat has become an imperative task in the walnut postharvest processing industry in the U.S. This research developed two hyperspectral fluorescence imaging based approaches, which were capable of differentiating walnut small shell fragments from meat. Firstly, a principal component analysis (PCA) and Gaussian mixture model (PCA-GMM)-based Bayesian classification method was introduced. PCA was used to extract features, and then the optimal number of components in PCA was selected by a cross-validation technique. The PCA-GMM-based Bayesian classifier was further applied to differentiate the walnut shell and meat according to the class-conditional probability and the prior estimated by the Gaussian mixture model. The experimental results showed the effectiveness of this PCA-GMM approach, and an overall 98.2% recognition rate was achieved. Secondly, Gaussian-kernel based Support Vector Machine (SVM) was presented for the walnut shell and meat discrimination in the hyperspectral florescence imagery. SVM was applied to seek an optimal low to high dimensional mapping such that the nonlinear separable input data in the original input data space became separable on the mapped high dimensional space, and hence fulfilled the classification between walnut shell and meat. An overall recognition rate of 98.7% was achieved by this method. Although the hyperspectral fluorescence imaging is capable of differentiating between walnut shell and meat, one persistent problem is how to deal with huge amount of data acquired by the hyperspectral imaging system, and hence improve the efficiency of application system. To solve this problem, an Independent Component Analysis with k-Nearest Neighbor Classifier (ICA-kNN) approach was presented in this research to reduce the data redundancy while not sacrifice the classification performance too much. An overall 90.6% detection rate was achieved given 10 optimal wavelengths, which constituted only 13% of the total acquired hyperspectral image data. In order to further evaluate the proposed method, the classification results of the ICA-kNN approach were also compared to the kNN classifier method alone. The experimental results showed that the ICA-kNN method with fewer wavelengths had the same performance as the kNN classifier alone using information from all 79 wavelengths. This demonstrated the effectiveness of the proposed ICA-kNN method for the hyperspectral band selection in the walnut shell and meat classification

    Development of soft computing and applications in agricultural and biological engineering

    Get PDF
    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed
    • …
    corecore