1,241 research outputs found

    Chinese named entity recognition using lexicalized HMMs

    Get PDF
    This paper presents a lexicalized HMM-based approach to Chinese named entity recognition (NER). To tackle the problem of unknown words, we unify unknown word identification and NER as a single tagging task on a sequence of known words. To do this, we first employ a known-word bigram-based model to segment a sentence into a sequence of known words, and then apply the uniformly lexicalized HMMs to assign each known word a proper hybrid tag that indicates its pattern in forming an entity and the category of the formed entity. Our system is able to integrate both the internal formation patterns and the surrounding contextual clues for NER under the framework of HMMs. As a result, the performance of the system can be improved without losing its efficiency in training and tagging. We have tested our system using different public corpora. The results show that lexicalized HMMs can substantially improve NER performance over standard HMMs. The results also indicate that character-based tagging (viz. the tagging based on pure single-character words) is comparable to and can even outperform the relevant known-word based tagging when a lexicalization technique is applied.postprin

    A Survey on Arabic Named Entity Recognition: Past, Recent Advances, and Future Trends

    Full text link
    As more and more Arabic texts emerged on the Internet, extracting important information from these Arabic texts is especially useful. As a fundamental technology, Named entity recognition (NER) serves as the core component in information extraction technology, while also playing a critical role in many other Natural Language Processing (NLP) systems, such as question answering and knowledge graph building. In this paper, we provide a comprehensive review of the development of Arabic NER, especially the recent advances in deep learning and pre-trained language model. Specifically, we first introduce the background of Arabic NER, including the characteristics of Arabic and existing resources for Arabic NER. Then, we systematically review the development of Arabic NER methods. Traditional Arabic NER systems focus on feature engineering and designing domain-specific rules. In recent years, deep learning methods achieve significant progress by representing texts via continuous vector representations. With the growth of pre-trained language model, Arabic NER yields better performance. Finally, we conclude the method gap between Arabic NER and NER methods from other languages, which helps outline future directions for Arabic NER.Comment: Accepted by IEEE TKD

    Named Entity Recognition in multilingual handwritten texts

    Full text link
    [ES] En nuestro trabajo presentamos un único modelo basado en aprendizaje profundo para la transcripción automática y el reconocimiento de entidades nombradas de textos manuscritos. Este modelo aprovecha las capacidades de generalización de sistemas de reconocimiento, combinando redes neuronales artificiales y n-gramas de caracteres. Se discute la evaluación de dicho sistema y, como consecuencia, se propone una nueva medida de evaluación. Con el fin de mejorar los resultados con respecto a dicha métrica, se evalúan diferentes estrategias de corrección de errores.[EN] In our work we present a single Deep Learning based model for the automatic transcription and Named Entity Recognition of handwritten texts. Such model leverages the generalization capabilities of recognition systems, combining Artificial Neural Networks and n-gram character models. The evaluation of said system is discussed and, as a consequence, a new evaluation metric is proposed. As a means to improve the results in regards to such metric, different error correction strategies are assessed.Villanova Aparisi, D. (2021). Named Entity Recognition in multilingual handwritten texts. Universitat Politècnica de València. http://hdl.handle.net/10251/174942TFG

    On the Use of Parsing for Named Entity Recognition

    Get PDF
    [Abstract] Parsing is a core natural language processing technique that can be used to obtain the structure underlying sentences in human languages. Named entity recognition (NER) is the task of identifying the entities that appear in a text. NER is a challenging natural language processing task that is essential to extract knowledge from texts in multiple domains, ranging from financial to medical. It is intuitive that the structure of a text can be helpful to determine whether or not a certain portion of it is an entity and if so, to establish its concrete limits. However, parsing has been a relatively little-used technique in NER systems, since most of them have chosen to consider shallow approaches to deal with text. In this work, we study the characteristics of NER, a task that is far from being solved despite its long history; we analyze the latest advances in parsing that make its use advisable in NER settings; we review the different approaches to NER that make use of syntactic information; and we propose a new way of using parsing in NER based on casting parsing itself as a sequence labeling task.Xunta de Galicia; ED431C 2020/11Xunta de Galicia; ED431G 2019/01This work has been funded by MINECO, AEI and FEDER of UE through the ANSWER-ASAP project (TIN2017-85160-C2-1-R); and by Xunta de Galicia through a Competitive Reference Group grant (ED431C 2020/11). CITIC, as Research Center of the Galician University System, is funded by the Consellería de Educación, Universidade e Formación Profesional of the Xunta de Galicia through the European Regional Development Fund (ERDF/FEDER) with 80%, the Galicia ERDF 2014-20 Operational Programme, and the remaining 20% from the Secretaría Xeral de Universidades (Ref. ED431G 2019/01). Carlos Gómez-Rodríguez has also received funding from the European Research Council (ERC), under the European Union’s Horizon 2020 research and innovation programme (FASTPARSE, Grant No. 714150)

    Statistical Parsing by Machine Learning from a Classical Arabic Treebank

    Get PDF
    Research into statistical parsing for English has enjoyed over a decade of successful results. However, adapting these models to other languages has met with difficulties. Previous comparative work has shown that Modern Arabic is one of the most difficult languages to parse due to rich morphology and free word order. Classical Arabic is the ancient form of Arabic, and is understudied in computational linguistics, relative to its worldwide reach as the language of the Quran. The thesis is based on seven publications that make significant contributions to knowledge relating to annotating and parsing Classical Arabic. Classical Arabic has been studied in depth by grammarians for over a thousand years using a traditional grammar known as i’rāb (إعغاة ). Using this grammar to develop a representation for parsing is challenging, as it describes syntax using a hybrid of phrase-structure and dependency relations. This work aims to advance the state-of-the-art for hybrid parsing by introducing a formal representation for annotation and a resource for machine learning. The main contributions are the first treebank for Classical Arabic and the first statistical dependency-based parser in any language for ellipsis, dropped pronouns and hybrid representations. A central argument of this thesis is that using a hybrid representation closely aligned to traditional grammar leads to improved parsing for Arabic. To test this hypothesis, two approaches are compared. As a reference, a pure dependency parser is adapted using graph transformations, resulting in an 87.47% F1-score. This is compared to an integrated parsing model with an F1-score of 89.03%, demonstrating that joint dependency-constituency parsing is better suited to Classical Arabic. The Quran was chosen for annotation as a large body of work exists providing detailed syntactic analysis. Volunteer crowdsourcing is used for annotation in combination with expert supervision. A practical result of the annotation effort is the corpus website: http://corpus.quran.com, an educational resource with over two million users per year

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail
    corecore