96 research outputs found

    Developments from enquiries into the learnability of the pattern languages from positive data

    Get PDF
    AbstractThe pattern languages are languages that are generated from patterns, and were first proposed by Angluin as a non-trivial class that is inferable from positive data [D. Angluin, Finding patterns common to a set of strings, Journal of Computer and System Sciences 21 (1980) 46–62; D. Angluin, Inductive inference of formal languages from positive data, Information and Control 45 (1980) 117–135]. In this paper we chronologize some results that developed from the investigations on the inferability of the pattern languages from positive data

    Ontology Reasoning with Deep Neural Networks

    Full text link
    The ability to conduct logical reasoning is a fundamental aspect of intelligent behavior, and thus an important problem along the way to human-level artificial intelligence. Traditionally, symbolic logic-based methods from the field of knowledge representation and reasoning have been used to equip agents with capabilities that resemble human logical reasoning qualities. More recently, however, there has been an increasing interest in using machine learning rather than symbolic logic-based formalisms to tackle these tasks. In this paper, we employ state-of-the-art methods for training deep neural networks to devise a novel model that is able to learn how to effectively perform logical reasoning in the form of basic ontology reasoning. This is an important and at the same time very natural logical reasoning task, which is why the presented approach is applicable to a plethora of important real-world problems. We present the outcomes of several experiments, which show that our model learned to perform precise ontology reasoning on diverse and challenging tasks. Furthermore, it turned out that the suggested approach suffers much less from different obstacles that prohibit logic-based symbolic reasoning, and, at the same time, is surprisingly plausible from a biological point of view

    Principles and Implementation of Deductive Parsing

    Get PDF
    We present a system for generating parsers based directly on the metaphor of parsing as deduction. Parsing algorithms can be represented directly as deduction systems, and a single deduction engine can interpret such deduction systems so as to implement the corresponding parser. The method generalizes easily to parsers for augmented phrase structure formalisms, such as definite-clause grammars and other logic grammar formalisms, and has been used for rapid prototyping of parsing algorithms for a variety of formalisms including variants of tree-adjoining grammars, categorial grammars, and lexicalized context-free grammars.Comment: 69 pages, includes full Prolog cod

    Derivation methods for hybrid knowledge bases with rules and ontologies

    Get PDF
    Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia InformáticaFirst of all, I would like to thank my advisor, José Júlio Alferes, for his incredible support. Right from the start, during the first semester of this work, when we were 2700 km apart and meeting regularly via Skype, until the end of this dissertation, he was always committed and available for discussions, even when he had lots of other urgent things to do. A really special thanks to Terrance Swift, whom acted as an advisor, helping me a lot in the second implementation, and correcting all XSB’s and CDF’s bugs. This implementation wouldn’t surely have reached such a fruitful end without his support. I would also like to thank all my colleagues and friends at FCT for the great work environment and for not letting me take myself too serious. A special thanks to my colleagues from Dresden for encouraging me to work even when there were so many other interesting things to do as an Erasmus student. I’m indebted to Luís Leal, Bárbara Soares, Jorge Soares and Cecília Calado, who kindly accepted to read a preliminary version of this report and gave me their valuable comments. For giving me working conditions and a partial financial support, I acknowledge the Departamento de Informática of the Faculdade de Ciências e Tecnologias of Universidade Nova de Lisboa. Last, but definitely not least, I would like to thank my parents and all my family for their continuous encouragement and motivation. A special thanks to Bruno for his love, support and patience

    An analysis of the application of AI to the development of intelligent aids for flight crew tasks

    Get PDF
    This report presents the results of a study aimed at developing a basis for applying artificial intelligence to the flight deck environment of commercial transport aircraft. In particular, the study was comprised of four tasks: (1) analysis of flight crew tasks, (2) survey of the state-of-the-art of relevant artificial intelligence areas, (3) identification of human factors issues relevant to intelligent cockpit aids, and (4) identification of artificial intelligence areas requiring further research

    Higher-Order Horn Clauses

    Get PDF
    A generalization of Horn clauses to a higher-order logic is described and examined as a basis for logic programming. In qualitative terms, these higher-order Horn clauses are obtained from the first-order ones by replacing first-order terms with simply typed λ-terms and by permitting quantification over all occurrences of function symbols and some occurrences of predicate symbols. Several proof-theoretic results concerning these extended clauses are presented. One result shows that although the substitutions for predicate variables can be quite complex in general, the substitutions necessary in the context of higher-order Horn clauses are tightly constrained. This observation is used to show that these higher-order formulas can specify computations in a fashion similar to first-order Horn clauses. A complete theorem proving procedure is also described for the extension. This procedure is obtained by interweaving higher-order unification with backchaining and goal reductions, and constitutes a higher-order generalization of SLD-resolution. These results have a practical realization in the higher-order logic programming language called λProlog

    A Statically Typed Logic Context Query Language With Parametric Polymorphism and Subtyping

    Get PDF
    The objective of this thesis is programming language support for context-sensitive program adaptations. Driven by the requirements for context-aware adaptation languages, a statically typed Object-oriented logic Context Query Language  (OCQL) was developed, which is suitable for integration with adaptation languages based on the Java type system. The ambient information considered in context-aware applications often originates from several, potentially distributed sources. OCQL employs the Semantic Web-language RDF Schema to structure and combine distributed context information. OCQL offers parametric polymorphism, subtyping, and a fixed set of meta-predicates. Its type system is based on mode analysis and a subset of Java Generics. For this reason a mode-inference approach for normal logic programs that considers variable aliasing and sharing was extended to cover all-solution predicates. OCQL is complemented by a service-oriented context-management infrastructure that supports the integration of OCQL with runtime adaptation approaches. The applicability of the language and its infrastructure were demonstrated with the context-aware aspect language CSLogicAJ. CSLogicAJ aspects encapsulate context-aware behavior and define in which contextual situation and program execution state the behavior is woven into the running program. The thesis concludes with a case study analyzing how runtime adaptation of mobile applications can be supported by pure object-, service- and context-aware aspect-orientation. Our study has shown that CSLogicAJ can improve the modularization of context-aware applications and reduce anticipation of runtime adaptations when compared to other approaches
    corecore