582 research outputs found

    A cluster based communication architecture for distributed applications in mobile ad hoc networks

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2006Includes bibliographical references (leaves: 63-69)Text in English; Abstract: Turkish and Englishx, 85 leavesIn this thesis, we aim to design and implement three protocols on a hierarchical architecture to solve the balanced clustering, backbone formation and distributed mutual exclusion problems for mobile ad hoc network(MANET)s. Our ÂŻrst goal is to cluster the MANET into balanced partitions. Clustering is a widely used approach to ease implemen-tation of various problems such as routing and resource management in MANETs. We propose the Merging Clustering Algorithm(MCA) for clustering in MANETs that merges clusters to form higher level of clusters by increasing their levels. Secondly, we aim to con-struct a directed ring topology across clusterheads which were selected by MCA. Lastly, we implement the distributed mutual exclusion algorithm based on Ricart-Agrawala algo-rithm for MANETs(Mobile RA). Each cluster is represented by a coordinator node on the ring which implements distributed mutual exclusion algorithm on behalf of any member in the cluster it represents. We show the operations of the algorithms, analyze their time and message complexities and provide results in the simulation environment of ns2

    Cloud-based platform for intelligent healthcare monitoring and risk prevention in hazardous manufacturing contexts

    Get PDF
    This paper presents an intelligent cloud-based platform for workers healthcare monitoring and risk prevention in potentially hazardous manufacturing contexts. The platform is structured according to sequential modules dedicated to data acquisition, processing and decision-making support. Several sensors and data sources, including smart wearables, machine tool embedded sensors and environmental sensors, are employed for data collection, comprising information on offline clinical background, operational and environmental data. The cloud data processing module is responsible for extracting relevant features from the acquired data in order to feed a machine learning-based decision-making support system. The latter provides a classification of workers’ health status so that a prompt intervention can be performed in particularly challenging scenarios

    The Problem of Mutual Exclusion: A New Distributed Solution

    Get PDF
    In both centralized and distributed systems, processes cooperate and compete with each other to access the system resources. Some of these resources must be used exclusively. It is then required that only one process access the shared resource at a given time. This is referred to as the problem of mutual exclusion. Several synchronization mechanisms have been proposed to solve this problem. In this thesis, an effort has been made to compile most of the existing mutual exclusion solutions for both shared memory and message-passing based systems. A new distributed algorithm, which uses a dynamic information structure, is presented to solve the problem of mutual exclusion. It is proved to be free from both deadlock and starvation. This solution is shown to be economical in terms of the number of message exchanges required per critical section execution. Procedures for recovery from both site and link failures are also given

    Human behavior understanding for worker-centered intelligent manufacturing

    Get PDF
    “In a worker-centered intelligent manufacturing system, sensing and understanding of the worker’s behavior are the primary tasks, which are essential for automatic performance evaluation & optimization, intelligent training & assistance, and human-robot collaboration. In this study, a worker-centered training & assistant system is proposed for intelligent manufacturing, which is featured with self-awareness and active-guidance. To understand the hand behavior, a method is proposed for complex hand gesture recognition using Convolutional Neural Networks (CNN) with multiview augmentation and inference fusion, from depth images captured by Microsoft Kinect. To sense and understand the worker in a more comprehensive way, a multi-modal approach is proposed for worker activity recognition using Inertial Measurement Unit (IMU) signals obtained from a Myo armband and videos from a visual camera. To automatically learn the importance of different sensors, a novel attention-based approach is proposed to human activity recognition using multiple IMU sensors worn at different body locations. To deploy the developed algorithms to the factory floor, a real-time assembly operation recognition system is proposed with fog computing and transfer learning. The proposed worker-centered training & assistant system has been validated and demonstrated the feasibility and great potential for applying to the manufacturing industry for frontline workers. Our developed approaches have been evaluated: 1) the multi-view approach outperforms the state-of-the-arts on two public benchmark datasets, 2) the multi-modal approach achieves an accuracy of 97% on a worker activity dataset including 6 activities and achieves the best performance on a public dataset, 3) the attention-based method outperforms the state-of-the-art methods on five publicly available datasets, and 4) the developed transfer learning model achieves a real-time recognition accuracy of 95% on a dataset including 10 worker operations”--Abstract, page iv

    Uncovering the specificities of CAD tools for industrial design with design theory – style models for generic singularity

    Get PDF
    International audienceAccording to some casual observers, computer-aided design (CAD) tools are very similar. These tools are used to design new artifacts in a digital environment; hence, they share typical software components, such as a computing engine and human-machine interface. However, CAD software is dedicated to specific professionals—such as engineers, three-dimensional (3D) artists, and industrial designers (IDs)—who claim that, despite their apparent similarities, CAD tools are so different that they are not substitutable. Moreover, CAD tools do not fully meet the needs of IDs. This paper aims at better characterizing CAD tools by taking into account their underlying design logic, which involves relying on recent advances in design theory. We show that engineering CAD tools are actually modeling tools that design a generic variety of products; 3D artist CAD tools not only design but immediately produce single digital artefacts; and ID CAD tools are neither a mix nor an hybridization of engineering CAD and 3D artist CAD tools but have their own logic, namely to create new conceptual models for a large variety of products, that is, the creation of a unique original style that leads to a generic singularity. Such tools are useful for many creative designers beyond IDs

    Integrated Systems Control in the Steel Industry. State-of-the-Art Review and Proceedings of the Conference June 30-July 2, 1975

    Get PDF
    Integrated systems control has as its goal the integration of the information processing, decision-making and control functions of an industrial system to achieve increased operating efficiency and productivity, better utilization of resources, improved product quality and other benefits. As the steel industry is well advanced, relative to other industries, in the application of highly computerized systems integration, it was selected as the basis for a first case study. The Review presents both the results of a state-of-the-art survey of integrated systems control in the steel industry and the proceedings of a IIASA conference on the subject. The results motivate a general methodology for integrated control system design based on a hierarchical structuring of the system, incorporating multilevel decomposition and temporal and functional multilayer concepts

    Parallel hierarchical global illumination

    Get PDF
    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, we have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations
    • …
    corecore