539 research outputs found

    A class of domain decomposition preconditioners for hp-discontinuous Galerkin finite element methods

    Get PDF
    In this article we address the question of efficiently solving the algebraic linear system of equations arising from the discretization of a symmetric, elliptic boundary value problem using hp-version discontinuous Galerkin finite element methods. In particular, we introduce a class of domain decomposition preconditioners based on the Schwarz framework, and prove bounds on the condition number of the resulting iteration operators. Numerical results confirming the theoretical estimates are also presented

    Nonoverlapping domain decomposition preconditioners for discontinuous Galerkin finite element methods in H2H^2-type norms

    Get PDF
    We analyse the spectral bounds of nonoverlapping domain decomposition preconditioners for hphp-version discontinuous Galerkin finite element methods in H2H^2-type norms, which arise in applications to fully nonlinear Hamilton--Jacobi--Bellman partial differential equations. We show that for a symmetric model problem, the condition number of the preconditioned system is at most of order 1+p6H3/q3h31+ p^6 H^3 /q^3 h^3, where HH and hh are respectively the coarse and fine mesh sizes, and qq and pp are respectively the coarse and fine mesh polynomial degrees. This represents the first result for this class of methods that explicitly accounts for the dependence of the condition number on qq, and its sharpness is shown numerically. The key analytical tool is an original optimal order approximation result between fine and coarse discontinuous finite element spaces.\ud \ud We then go beyond the model problem and show computationally that these methods lead to efficient and competitive solvers in practical applications to nonsymmetric, fully nonlinear Hamilton--Jacobi--Bellman equations

    A class of domain decomposition preconditioners for hp-discontinuous Galerkin finite element methods

    Get PDF
    In this article we address the question of efficiently solving the algebraic linear system of equations arising from the discretization of a symmetric, elliptic boundary value problem using hp-version discontinuous Galerkin finite element methods. In particular, we introduce a class of domain decomposition preconditioners based on the Schwarz framework, and prove bounds on the condition number of the resulting iteration operators. Numerical results confirming the theoretical estimates are also presented

    Nonoverlapping domain decomposition preconditioners for discontinuous Galerkin approximations of Hamilton--Jacobi--Bellman equations

    Get PDF
    We analyse a class of nonoverlapping domain decomposition preconditioners for nonsymmetric linear systems arising from discontinuous Galerkin finite element approximation of fully nonlinear Hamilton--Jacobi--Bellman (HJB) partial differential equations. These nonsymmetric linear systems are uniformly bounded and coercive with respect to a related symmetric bilinear form, that is associated to a matrix A\mathbf{A}. In this work, we construct a nonoverlapping domain decomposition preconditioner P\mathbf{P}, that is based on A\mathbf{A}, and we then show that the effectiveness of the preconditioner for solving the} nonsymmetric problems can be studied in terms of the condition number κ(P−1A)\kappa(\mathbf{P}^{-1}\mathbf{A}). In particular, we establish the bound κ(P−1A)≲1+p6H3/q3h3\kappa(\mathbf{P}^{-1}\mathbf{A}) \lesssim 1+ p^6 H^3 /q^3 h^3, where HH and hh are respectively the coarse and fine mesh sizes, and qq and pp are respectively the coarse and fine mesh polynomial degrees. This represents the first such result for this class of methods that explicitly accounts for the dependence of the condition number on qq; our analysis is founded upon an original optimal order approximation result between fine and coarse discontinuous finite element spaces. Numerical experiments demonstrate the sharpness of this bound. Although the preconditioners are not robust with respect to the polynomial degree, our bounds quantify the effect of the coarse and fine space polynomial degrees. Furthermore, we show computationally that these methods are effective in practical applications to nonsymmetric, fully nonlinear HJB equations under hh-refinement for moderate polynomial degrees

    An agglomeration-based massively parallel non-overlapping additive Schwarz preconditioner for high-order discontinuous Galerkin methods on polytopic grids

    Full text link
    In this article we design and analyze a class of two-level non-overlapping additive Schwarz preconditioners for the solution of the linear system of equations stemming from discontinuous Galerkin discretizations of second-order elliptic partial differential equations on polytopic meshes. The preconditioner is based on a coarse space and a non-overlapping partition of the computational domain where local solvers are applied in parallel. In particular, the coarse space can potentially be chosen to be non-embedded with respect to the finer space; indeed it can be obtained from the fine grid by employing agglomeration and edge coarsening techniques. We investigate the dependence of the condition number of the preconditioned system with respect to the diffusion coefficient and the discretization parameters, i.e., the mesh size and the polynomial degree of the fine and coarse spaces. Numerical examples are presented which confirm the theoretical bounds

    A note on optimal spectral bounds for nonoverlapping domain decomposition preconditioners for hp-version discontinuous Galerkin methods

    Get PDF
    In this article, we consider the derivation of hp-optimal spectral bounds for a class of domain decomposition preconditioners based on the Schwarz framework for discontinuous Galerkin finite element approximations of second-order elliptic partial differential equations. In particular, we improve the bounds derived in our earlier article [P.F. Antonietti and P. Houston, J. Sci. Comput., 46(1):124--149, 2011] in the sense that the resulting bound on the condition number of the preconditioned system is not only explicit with respect to the coarse and fine mesh sizes H and h, respectively, and the fine mesh polynomial degree p, but now also explicit with respect to the polynomial degree q employed for the coarse grid solver. More precisely, we show that the resulting spectral bounds are of order p^2H/(qh) for the hp-version of the discontinuous Galerkin method

    A note on optimal spectral bounds for nonoverlapping domain decomposition preconditioners for hp-version discontinuous Galerkin methods

    Get PDF
    In this article, we consider the derivation of hp-optimal spectral bounds for a class of domain decomposition preconditioners based on the Schwarz framework for discontinuous Galerkin finite element approximations of second-order elliptic partial differential equations. In particular, we improve the bounds derived in our earlier article [P.F. Antonietti and P. Houston, J. Sci. Comput., 46(1):124-149, 2011] in the sense that the resulting bound on the condition number of the preconditioned system is not only explicit with respect to the coarse and fine mesh sizes H and h, respectively, and the fine mesh polynomial degree p, but now also explicit with respect to the polynomial degree q employed for the coarse grid solver. More precisely, we show that the resulting spectral bounds are of order p2H/(qh) for the hp-version of the discontinuous Galerkin method
    • …
    corecore