55 research outputs found

    Conditional Posterior Cramer-Rao Lower Bound and Distributed Target Tracking in Sensor Networks

    Get PDF
    Sequential Bayesian estimation is the process of recursively estimating the state of a dynamical system observed in the presence of noise. Posterior Cramer-Rao lower bound (PCRLB) sets a performance limit onany Bayesian estimator for the given dynamical system. The PCRLBdoes not fully utilize the existing measurement information to give anindication of the mean squared error (MSE) of the estimator in the future. In many practical applications, we are more concerned with the value of the bound in the future than in the past. PCRLB is an offline bound, because it averages out the very useful measurement information, which makes it an off-line bound determined only by the system dynamical model, system measurement model and the prior knowledge of the system state at the initial time. This dissertation studies the sequential Bayesian estimation problem and then introduces the notation of conditional PCRLB, which utilizes the existing measurement information up to the current time, and sets the limit on the MSE of any Bayesian estimators at the next time step. This work has two emphases: firstly, we give the mathematically rigorous formulation of the conditional PCRLB as well as the approximate recursive version of conditional PCRLB for nonlinear, possibly non-Gaussian dynamical systems. Secondly, we apply particle filter techniques to compute the numerical values of the conditional PCRLB approximately, which overcomes the integration problems introduced by nonlinear/non-Gaussian systems. Further, we explore several possible applications of the proposed bound to find algorithms that provide improved performance. The primary problem of interest is the sensor selection problem for target tracking in sensor networks. Comparisons are also made between the performance of sensor selection algorithm based on the proposed bound and the existing approaches, such as information driven, nearest neighbor, and PCRLB with renewal strategy, to demonstrate the superior performances of the proposed approach. This dissertation also presents a bandwidth-efficient algorithm for tracking a target in sensor networks using distributed particle filters. This algorithm distributes the computation burden for target tracking over the sensor nodes. Each sensor node transmits a compressed local tracking result to the fusion center by a modified expectationmaximization (EM) algorithm to save the communication bandwidth. The fusion center incorporates the compressed tracking results to give the estimate of the target state. Finally, the target tracking problem in heterogeneous sensor networks is investigated extensively. Extended Kalman Filter and particle filter techniques are implemented and compared for tracking a maneuvering

    Signal Processing for Improved Wireless Receiver Performance

    Get PDF

    Signal Subspace Processing in the Beam Space of a True Time Delay Beamformer Bank

    Get PDF
    A number of techniques for Radio Frequency (RF) source location for wide bandwidth signals have been described that utilize coherent signal subspace processing, but often suffer from limitations such as the requirement for preliminary source location estimation, the need to apply the technique iteratively, computational expense or others. This dissertation examines a method that performs subspace processing of the data from a bank of true time delay beamformers. The spatial diversity of the beamformer bank alleviates the need for a preliminary estimate while simultaneously reducing the dimensionality of subsequent signal subspace processing resulting in computational efficiency. The pointing direction of the true time delay beams is independent of frequency, which results in a mapping from element space to beam space that is wide bandwidth in nature. This dissertation reviews previous methods, introduces the present method, presents simulation results that demonstrate the assertions, discusses an analysis of performance in relation to the Cramer-Rao Lower Bound (CRLB) with various levels of noise in the system, and discusses computational efficiency. One limitation of the method is that in practice it may be appropriate for systems that can tolerate a limited field of view. The application of Electronic Intelligence is one such application. This application is discussed as one that is appropriate for a method exhibiting high resolution of very wide bandwidth closely spaced sources and often does not require a wide field of view. In relation to system applications, this dissertation also discusses practical employment of the novel method in terms of antenna elements, arrays, platforms, engagement geometries, and other parameters. The true time delay beam space method is shown through modeling and simulation to be capable of resolving closely spaced very wideband sources over a relevant field of view in a single algorithmic pass, requiring no course preliminary estimation, and exhibiting low computational expense superior to many previous wideband coherent integration techniques

    Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis

    Get PDF
    Super-resolution microscopy provides direct insight into fundamental biological processes occurring at length scales smaller than light’s diffraction limit. The analysis of data at such scales has brought statistical and machine learning methods into the mainstream. Here we provide a survey of data analysis methods starting from an overview of basic statistical techniques underlying the analysis of super-resolution and, more broadly, imaging data. We subsequently break down the analysis of super-resolution data into four problems: the localization problem, the counting problem, the linking problem, and what we’ve termed the interpretation problem
    • …
    corecore