2,161 research outputs found

    Hypotheses, evidence and relationships: The HypER approach for representing scientific knowledge claims

    Get PDF
    Biological knowledge is increasingly represented as a collection of (entity-relationship-entity) triplets. These are queried, mined, appended to papers, and published. However, this representation ignores the argumentation contained within a paper and the relationships between hypotheses, claims and evidence put forth in the article. In this paper, we propose an alternate view of the research article as a network of 'hypotheses and evidence'. Our knowledge representation focuses on scientific discourse as a rhetorical activity, which leads to a different direction in the development of tools and processes for modeling this discourse. We propose to extract knowledge from the article to allow the construction of a system where a specific scientific claim is connected, through trails of meaningful relationships, to experimental evidence. We discuss some current efforts and future plans in this area

    Data fluidity in DARIAH -- pushing the agenda forward

    Get PDF
    This paper provides both an update concerning the setting up of the European DARIAH infrastructure and a series of strong action lines related to the development of a data centred strategy for the humanities in the coming years. In particular we tackle various aspect of data management: data hosting, the setting up of a DARIAH seal of approval, the establishment of a charter between cultural heritage institutions and scholars and finally a specific view on certification mechanisms for data

    Extracting discourse elements and annotating scientific documents using the SciAnnotDoc model: a use case in gender documents

    Get PDF
    When scientists are searching for informa- tion, they generally have a precise objective in mind. Instead of looking for documents “about a topic T”, they try to answer specific questions such as finding the definition of a concept, finding results for a particular problem, checking whether an idea has already been tested, or comparing the scientific conclusions of two articles. Answering these precise or complex queries on a corpus of scientific documents requires precise mod- elling of the full content of the documents. In particu- lar, each document element must be characterised by its discourse type (hypothesis, definition, result, method, etc.). In this paper we present a scientific document model (SciAnnotDoc ontology), developed from an em- pirical study conducted with scientists, that models the discourse types. We developed an automated process that analyse documents effectively identifying the dis- course types of each element. Using syntactic rules (pat- terns), we evaluated the process output in terms of pre- cision and recall using a previously annotated corpus in Gender Studies. We chose to annotate documents in Humanities, as these documents are well known to be less formalised than those in “hard science”. The process output has been used to create a SciAnnotDoc representation of the corpus on top of which we built a faceted search interface. Experiments with users show that searches using with this interface clearly outper- form standard keyword searches for precise or complex queries

    Linked Research on the Decentralised Web

    Get PDF
    This thesis is about research communication in the context of the Web. I analyse literature which reveals how researchers are making use of Web technologies for knowledge dissemination, as well as how individuals are disempowered by the centralisation of certain systems, such as academic publishing platforms and social media. I share my findings on the feasibility of a decentralised and interoperable information space where researchers can control their identifiers whilst fulfilling the core functions of scientific communication: registration, awareness, certification, and archiving. The contemporary research communication paradigm operates under a diverse set of sociotechnical constraints, which influence how units of research information and personal data are created and exchanged. Economic forces and non-interoperable system designs mean that researcher identifiers and research contributions are largely shaped and controlled by third-party entities; participation requires the use of proprietary systems. From a technical standpoint, this thesis takes a deep look at semantic structure of research artifacts, and how they can be stored, linked and shared in a way that is controlled by individual researchers, or delegated to trusted parties. Further, I find that the ecosystem was lacking a technical Web standard able to fulfill the awareness function of research communication. Thus, I contribute a new communication protocol, Linked Data Notifications (published as a W3C Recommendation) which enables decentralised notifications on the Web, and provide implementations pertinent to the academic publishing use case. So far we have seen decentralised notifications applied in research dissemination or collaboration scenarios, as well as for archival activities and scientific experiments. Another core contribution of this work is a Web standards-based implementation of a clientside tool, dokieli, for decentralised article publishing, annotations and social interactions. dokieli can be used to fulfill the scholarly functions of registration, awareness, certification, and archiving, all in a decentralised manner, returning control of research contributions and discourse to individual researchers. The overarching conclusion of the thesis is that Web technologies can be used to create a fully functioning ecosystem for research communication. Using the framework of Web architecture, and loosely coupling the four functions, an accessible and inclusive ecosystem can be realised whereby users are able to use and switch between interoperable applications without interfering with existing data. Technical solutions alone do not suffice of course, so this thesis also takes into account the need for a change in the traditional mode of thinking amongst scholars, and presents the Linked Research initiative as an ongoing effort toward researcher autonomy in a social system, and universal access to human- and machine-readable information. Outcomes of this outreach work so far include an increase in the number of individuals self-hosting their research artifacts, workshops publishing accessible proceedings on the Web, in-the-wild experiments with open and public peer-review, and semantic graphs of contributions to conference proceedings and journals (the Linked Open Research Cloud). Some of the future challenges include: addressing the social implications of decentralised Web publishing, as well as the design of ethically grounded interoperable mechanisms; cultivating privacy aware information spaces; personal or community-controlled on-demand archiving services; and further design of decentralised applications that are aware of the core functions of scientific communication

    The articles.ELM resource: simplifying access to protein linear motif literature by annotation, text-mining and classification.

    Get PDF
    Modern biology produces data at a staggering rate. Yet, much of these biological data is still isolated in the text, figures, tables and supplementary materials of articles. As a result, biological information created at great expense is significantly underutilised. The protein motif biology field does not have sufficient resources to curate the corpus of motif-related literature and, to date, only a fraction of the available articles have been curated. In this study, we develop a set of tools and a web resource, 'articles.ELM', to rapidly identify the motif literature articles pertinent to a researcher's interest. At the core of the resource is a manually curated set of about 8000 motif-related articles. These articles are automatically annotated with a range of relevant biological data allowing in-depth search functionality. Machine-learning article classification is used to group articles based on their similarity to manually curated motif classes in the Eukaryotic Linear Motif resource. Articles can also be manually classified within the resource. The 'articles.ELM' resource permits the rapid and accurate discovery of relevant motif articles thereby improving the visibility of motif literature and simplifying the recovery of valuable biological insights sequestered within scientific articles. Consequently, this web resource removes a critical bottleneck in scientific productivity for the motif biology field. Database URL: http://slim.icr.ac.uk/articles/

    The articles.ELM resource: Simplifying access to protein linear motif literature by annotation, text-mining and classification

    Get PDF
    Modern biology produces data at a staggering rate. Yet, much of these biological data is still isolated in the text, figures, tables and supplementary materials of articles. As a result, biological information created at great expense is significantly underutilised. The protein motif biology field does not have sufficient resources to curate the corpus of motif-related literature and, to date, only a fraction of the available articles have been curated. In this study, we develop a set of tools and a web resource, 'articles.ELM', to rapidly identify the motif literature articles pertinent to a researcher's interest. At the core of the resource is a manually curated set of about 8000 motif-related articles. These articles are automatically annotated with a range of relevant biological data allowing in-depth search functionality. Machine-learning article classification is used to group articles based on their similarity to manually curated motif classes in the Eukaryotic Linear Motif resource. Articles can also be manually classified within the resource. The 'articles.ELM' resource permits the rapid and accurate discovery of relevant motif articles thereby improving the visibility of motif literature and simplifying the recovery of valuable biological insights sequestered within scientific articles. Consequently, this web resource removes a critical bottleneck in scientific productivity for the motif biology field.Fil: Palopoli, Nicolás. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Iserte, Javier Alonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Chemes, Lucia Beatriz. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Marino Buslje, Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Parisi, Gustavo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gibson, Toby James. Ruprecht Karls Universitat Heidelberg; AlemaniaFil: Davey, N.E.. The Institute of Cancer Research; Reino Unid
    corecore