29 research outputs found

    Underwater Inductive Power Transfer with Wireless Charging Applications

    Get PDF
    Underwater wireless power transfer (UWPT) has become an area of great interest due to the advancement of autonomous underwater vehicles (AUVs) and electic boats. This paper seeks to investigate the variation of the coupling coefficient and power transfer in air versus in seawater. The design is based on a class E converter as it can achieve soft-switching inherently. I made the transmitter and receiver coils then measured self-inductance and parasitic resistance in air and in water. I noted that self-inductance increases when they are placed in water but the mutual inductance is lower. I then calculated the component values for the class E converter based on inductor values (140 μH and 105 μH) and simulated the circuit on LTspice. The power at the output was 74W which is lower than the required value. However, I noted that reducing the coils inductance values while maintaining the value of the other passive components increased the efficiency and power at the output upto four times (311W). The final value chosen for making the inductors was 115 μH and 75 μH as these values gave the maximum power at the output while achieving ZVS. I then designed the transmitter and receiver circuits on Altium and printed the PCBs. All the components were then soldered onto the board and the tests done

    Improved Design of Wireless Electrical Energy Transfer System for Various Power Applications

    Get PDF
    This thesis introduces a state-of-the-art review of existing wireless power transfer (WPT) technologies with a detailed comparison and presents the limitations of the inductive power transfer system through simulation and practical analyses. This thesis also presents the expanded use of the high-frequency analysis tool, known as FEKO, and the novel application of frequency response analyser (FRA) with various simulations and practical demonstrations for enhancing the design and maintenance of WPT systems

    Application of a Design for Excellence Methodology for a Wireless Charger Housing in Underwater Environments

    Get PDF
    A major effort is put into the production of green energy as a countermeasure to climatic changes and sustainability. Thus, the energy industry is currently betting on offshore wind energy, using wind turbines with fixed and floating platforms. This technology can benefit greatly from interventive autonomous underwater vehicles (AUVs) to assist in the maintenance and control of underwater structures. A wireless charger system can extend the time the AUV remains underwater, by allowing it to charge its batteries through a docking station. The present work details the development process of a housing component for a wireless charging system to be implemented in an AUV, addressed as wireless charger housing (WCH), from the concept stage to the final physical verification and operation stage. The wireless charger system prepared in this research aims to improve the longevity of the vehicle mission, without having to return to the surface, by enabling battery charging at a docking station. This product was designed following a design for excellence (DfX) and modular design philosophy, implementing visual scorecards to measure the success of certain design aspects. For an adequate choice of materials, the Ashby method was implemented. The structural performance of the prototypes was validated via a linear static finite element analysis (FEA). These prototypes were further physically verified in a hyperbaric chamber. Results showed that the application of FEA, together with well-defined design goals, enable the WCH optimisation while ensuring up to 75% power efficiency. This methodology produced a system capable of transmitting energy for underwater robotic applications.This work is funded by the European Commission under the European Union’s Horizon 2020—The EU Framework Programme for Research and Innovation 2014–2020, under grant agreement No. 871571 (ATLANTIS).info:eu-repo/semantics/publishedVersio

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    EUROSENSORS XVII : book of abstracts

    Get PDF
    Fundação Calouste Gulbenkien (FCG).Fundação para a Ciência e a Tecnologia (FCT)

    NASA patent abstracts bibliography: A continuing bibliography. Section 2: Indexes (supplement 23)

    Get PDF
    Entries for 4000 patent and patent applications citations for the period May 1969 through June 1983 are listed. Subject, invention, source, number, and accession number indexes are included

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 22)

    Get PDF
    Entries for over 4000 patents and patent applications citations for the period May 1969 through December 1982 are listed. Subject, invention, source, number, and accession number indexes are included
    corecore