29 research outputs found

    Resilient architecture (preliminary version)

    Get PDF
    The main objectives of WP2 are to define a resilient architecture and to develop a range of middleware solutions (i.e. algorithms, protocols, services) for resilience to be applied in the design of highly available, reliable and trustworthy networking solutions. This is the first deliverable within this work package, a preliminary version of the resilient architecture. The deliverable builds on previous results from WP1, the definition of a set of applications and use cases, and provides a perspective of the middleware services that are considered fundamental to address the dependability requirements of those applications. Then it also describes the architectural organisation of these services, according to a number of factors like their purpose, their function within the communication stack or their criticality/specificity for resilience. WP2 proposes an architecture that differentiates between two classes of services, a class including timeliness and trustworthiness oracles, and a class of so called complex services. The resulting architecture is referred to as a "hybrid architecture". The hybrid architecture is motivated and discussed in this document. The services considered within each of the service classes of the hybrid architecture are described. This sets the background for the work to be carried on in the scope of tasks 2.2 and 2.3 of the work package. Finally, the deliverable also considers high-level interfacing aspects, by providing a discussion about the possibility of using existing Service Availability Forum standard interfaces within HIDENETS, in particular discussing possibly necessary extensions to those interfaces in order to accommodate specific HIDENETS services suited for ad-hoc domain

    Architecture, Services and Protocols for CRUTIAL

    Get PDF
    This document describes the complete specification of the architecture, services and protocols of the project CRUTIAL. The CRUTIAL Architecture intends to reply to a grand challenge of computer science and control engineering: how to achieve resilience of critical information infrastructures (CII), in particular in the electrical sector. In general lines, the document starts by presenting the main architectural options and components of the architecture, with a special emphasis on a protection device called the CRUTIAL Information Switch (CIS). Given the various criticality levels of the equipments that have to be protected, and the cost of using a replicated device, we define a hierarchy of CIS designs incrementally more resilient. The different CIS designs offer various trade offs in terms of capabilities to prevent and tolerate intrusions, both in the device itself and in the information infrastructure. The Middleware Services, APIs and Protocols chapter describes our approach to intrusion tolerant middleware. The CRUTIAL middleware comprises several building blocks that are organized on a set of layers. The Multipoint Network layer is the lowest layer of the middleware, and features an abstraction of basic communication services, such as provided by standard protocols, like IP, IPsec, UDP, TCP and SSL/TLS. The Communication Support layer features three important building blocks: the Randomized Intrusion-Tolerant Services (RITAS), the CIS Communication service and the Fosel service for mitigating DoS attacks. The Activity Support layer comprises the CIS Protection service, and the Access Control and Authorization service. The Access Control and Authorization service is implemented through PolyOrBAC, which defines the rules for information exchange and collaboration between sub-modules of the architecture, corresponding in fact to different facilities of the CII’s organizations. The Monitoring and Failure Detection layer contains a definition of the services devoted to monitoring and failure detection activities. The Runtime Support Services, APIs, and Protocols chapter features as a main component the Proactive-Reactive Recovery service, whose aim is to guarantee perpetual correct execution of any components it protects.Project co-funded by the European Commission within the Sixth Frame-work Programme (2002-2006

    Preliminary Specification of Services and Protocols

    Get PDF
    This document describes the preliminary specification of services and protocols for the Crutial Architecture. The Crutial Architecture definition, first addressed in Crutial Project Technical Report D4 (January 2007), intends to reply to a grand challenge of computer science and control engineering: how to achieve resilience of critical information infrastructures, in particular in the electrical sector. The definitions herein elaborate on the major architectural options and components established in the Preliminary Architecture Specification (D4), with special relevance to the Crutial middleware building blocks, and are based on the fault, synchrony and topological models defined in the same document. The document, in general lines, describes the Runtime Support Services and APIs, and the Middleware Services and APIs. Then, it delves into the protocols, describing: Runtime Support Protocols, and Middleware Services Protocols. The Runtime Support Services and APIs chapter features as a main component, the Proactive-Reactive Recovery Service, whose aim is to guarantee perpetual execution of any components it protects. The Middleware Services and APIs chapter describes our approach to intrusion-tolerant middleware. The middleware comprises several layers. The Multipoint Network layer is the lowest layer of CRUTIAL's middleware, and features an abstraction of basic communication services, such as provided by standard protocols, like IP, IPsec, UDP, TCP and SSL/TLS. The Communication Support Services feature two important building blocks: the Randomized Intrusion-Tolerant Services (RITAS), and the Overlay Protection Layer (OPL) against DoS attacks. The Activity Support Services currently defined comprise the CIS Protection service, and the Access Control and Authorization service. Protection as described in this report is implemented by mechanisms and protocols residing on a device called Crutial Information Switch (CIS). The Access Control and Authorization service is implemented through PolyOrBAC, which defines the rules for information exchange and collaboration between sub-modules of the architecture, corresponding in fact to different facilities of the CII's organizations.The Monitoring and Failure Detection layer contains a preliminary definition of the middleware services devoted to monitoring and failure detection activities. The remaining chapters describe the protocols implementing the above-mentioned services: Runtime Support Protocols, and Middleware Services Protocol

    Revised reference model

    Get PDF
    This document contains an update of the HIDENETS Reference Model, whose preliminary version was introduced in D1.1. The Reference Model contains the overall approach to development and assessment of end-to-end resilience solutions. As such, it presents a framework, which due to its abstraction level is not only restricted to the HIDENETS car-to-car and car-to-infrastructure applications and use-cases. Starting from a condensed summary of the used dependability terminology, the network architecture containing the ad hoc and infrastructure domain and the definition of the main networking elements together with the software architecture of the mobile nodes is presented. The concept of architectural hybridization and its inclusion in HIDENETS-like dependability solutions is described subsequently. A set of communication and middleware level services following the architecture hybridization concept and motivated by the dependability and resilience challenges raised by HIDENETS-like scenarios is then described. Besides architecture solutions, the reference model addresses the assessment of dependability solutions in HIDENETS-like scenarios using quantitative evaluations, realized by a combination of top-down and bottom-up modelling, as well as verification via test scenarios. In order to allow for fault prevention in the software development phase of HIDENETS-like applications, generic UML-based modelling approaches with focus on dependability related aspects are described. The HIDENETS reference model provides the framework in which the detailed solution in the HIDENETS project are being developed, while at the same time facilitating the same task for non-vehicular scenarios and application

    Security Evaluation of Arduino Projects Developed by Hobbyist IoT Programmers

    Get PDF
    Arduino is an open-source electronics platform based on cheap hardware and the easy-to-use software Integrated Development Environment (IDE). Nowadays, because of its open-source nature and its simple and accessible user experience, Arduino is ubiquitous and used among hobbyist and novice programmers for Do It Yourself (DIY) projects, especially in the Internet of Things (IoT) domain. Unfortunately, such diffusion comes with a price. Many developers start working on this platform without having a deep knowledge of the leading security concepts in Information and Communication Technologies (ICT). Their applications, often publicly available on GitHub (or other code-sharing platforms), can be taken as examples by other developers or downloaded and used by non-expert users, spreading these issues in other projects. For these reasons, this paper aims at understanding the current landscape by analyzing a set of open-source DIY IoT projects and looking for potential security issues. Furthermore, the paper classifies those issues according to the proper security category. This study’s results offer a deeper understanding of the security concerns in Arduino projects created by hobbyist programmers and the dangers that may be faced by those who use these projects

    Efficient mechanisms to provide fault tolerance in interconnection networks for pc clusters

    Full text link
    Actualmente, los clusters de PC son un alternativa rentable a los computadores paralelos. En estos sistemas, miles de componentes (procesadores y/o discos duros) se conectan a través de redes de interconexión de altas prestaciones. Entre las tecnologías de red actualmente disponibles para construir clusters, InfiniBand (IBA) ha emergido como un nuevo estándar de interconexión para clusters. De hecho, ha sido adoptado por muchos de los sistemas más potentes construidos actualmente (lista top500). A medida que el número de nodos aumenta en estos sistemas, la red de interconexión también crece. Junto con el aumento del número de componentes la probabilidad de averías aumenta dramáticamente, y así, la tolerancia a fallos en el sistema en general, y de la red de interconexión en particular, se convierte en una necesidad. Desafortunadamente, la mayor parte de las estrategias de encaminamiento tolerantes a fallos propuestas para los computadores masivamente paralelos no pueden ser aplicadas porque el encaminamiento y las transiciones de canal virtual son deterministas en IBA, lo que impide que los paquetes eviten los fallos. Por lo tanto, son necesarias nuevas estrategias para tolerar fallos. Por ello, esta tesis se centra en proporcionar los niveles adecuados de tolerancia a fallos a los clusters de PC, y en particular a las redes IBA. En esta tesis proponemos y evaluamos varios mecanismos adecuados para las redes de interconexión para clusters. El primer mecanismo para proporcionar tolerancia a fallos en IBA (al que nos referimos como encaminamiento tolerante a fallos basado en transiciones; TFTR) consiste en usar varias rutas disjuntas entre cada par de nodos origen-destino y seleccionar la ruta apropiada en el nodo fuente usando el mecanismo APM proporcionado por IBA. Consiste en migrar las rutas afectadas por el fallo a las rutas alternativas sin fallos. Sin embargo, con este fin, es necesario un algoritmo eficiente de encaminamiento capaz de proporcionar suficientesMontañana Aliaga, JM. (2008). Efficient mechanisms to provide fault tolerance in interconnection networks for pc clusters [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2603Palanci

    A Hierarchical Architectural Framework for Securing Unmanned Aerial Systems

    Get PDF
    Unmanned Aerial Systems (UAS) are becoming more widely used in the new era of evolving technology; increasing performance while decreasing size, weight, and cost. A UAS equipped with a Flight Control System (FCS) that can be used to fly semi- or fully-autonomous is a prime example of a Cyber Physical and Safety Critical system. Current Cyber-Physical defenses against malicious attacks are structured around security standards for best practices involving the development of protocols and the digital software implementation. Thus far, few attempts have been made to embed security into the architecture of the system considering security as a holistic problem. Therefore, a Hierarchical, Embedded, Cyber Attack Detection (HECAD) framework is developed to provide security in a holistic manor, providing resiliency against cyber-attacks as well as introducing strategies for mitigating and dealing with component failures. Traversing the hardware/software barrier, HECAD provides detection of malicious faults at the hardware and software level; verified through the development of an FPGA implementation and tested using a UAS FCS

    Scratchpad Memory Management For Multicore Real-Time Embedded Systems

    Get PDF
    Multicore systems will continue to spread in the domain of real-time embedded systems due to the increasing need for high-performance applications. This research discusses some of the challenges associated with employing multicore systems for safety-critical real-time applications. Mainly, this work is concerned with providing: 1) efficient inter-core timing isolation for independent tasks, and 2) predictable task communication for communicating tasks. Principally, we introduce a new task execution model, based on the 3-phase execution model, that exploits the Direct Memory Access (DMA) controllers available in modern embedded platforms along with ScratchPad Memories (SPMs) to enforce strong timing isolation between tasks. The DMA and the SPMs are explicitly managed to pre-load tasks from main memory into the local (private) scratchpad memories. Tasks are then executed from the local SPMs without accessing main memory. This model allows CPU execution to be overlapped with DMA loading/unloading operations from and to main memory. We show that by co-scheduling task execution on CPUs and using DMA to access memory and I/O, we can efficiently hide access latency to physical resources. In turn, this leads to significant improvements in system schedulability, compared to both the case of unregulated contention for access to physical resources and to previous cache and SPM management techniques for real-time systems. The presented SPM-centric scheduling algorithms and analyses cover single-core, partitioned, and global real-time systems. The proposed scheme is also extended to support large tasks that do not fit entirely into the local SPM. Moreover, the schedulability analysis considers the case of recovering from transient soft errors (bit flips caused by a single event upset) in several levels of memories, that cannot be automatically corrected in hardware by the ECC unit. The proposed SPM-centric scheduling is integrated at the OS level; thus it is transparent to applications. The proposed scheme is implemented and evaluated on an FPGA platform and a Commercial-Off-The-Shelf (COTS) platform. In regards to real-time task communication, two types of communication are considered. 1) Asynchronous inter-task communication, between either sequential tasks (single-threaded) or parallel tasks (multi-threaded). 2) Intra-task communication, where parallel threads of the same application exchange data. A new task scheduling model for parallel tasks (Bundled Scheduling) is proposed to facilitate intra-task communication and reduce synchronization overheads. We show that the proposed bundled scheduling model can be applied to several parallel programming models, such as fork-join and DAG-based applications, leading to improved system schedulability. Finally, intra-task communication is governed by a predictable inter-core communication platform. Specifically, we propose HopliteRT, a lean and predictable Network-on-Chip that connects the private SPMs

    Malware tolerance: Distributing trust over multiple devices

    Get PDF
    Current security solutions try to keep the adversary out of the computer infrastructure. However, with zero-day exploits and certain rootkit attacks, the assumption that attacks can be blocked does not hold any more. This work presents the concept of malware tolerance accepting that every device might be compromised at some point in time. The concept aims to distribute trust over several devices so that no single device is able to compromise security features by itself. I create three malware-tolerant techniques to demonstrate the feasibility of the concept. This thesis introduces a trusted input system which delivers keystrokes securely from the keyboard to a recipient even if one of its components is compromised. The second approach is the design of a self-healing Industrial Control System, a sensor-actuator network to securely control a physical system. If an adversary manages to compromise one of the components, it remains secure and can even recover from attacks. Lastly, this thesis proposes a mesh network architecture aimed at smart-home networks without assuming any device in the network invulnerable to attacks applying isolation mechanisms to otherwise flat mesh networks. This thesis gives formal security proofs with protocol verifier ProVerif. The proof scripts are open-source

    After Action Report

    Get PDF
    17 USC 105 interim-entered record; under review.Prepared by Lyla Englehorn, NPS Faculty Associate – Research for VADM David Lewis USN (ret) NWSI Director; CAPT Jeff Kline USN retired, Professor of the Practice NPS Operations Research Department; and Dr. Brian Bingham, CRUSER DirectorThe September 2021 workshop “Hybrid Force 2045” tasked participants to apply emerging technologies to shape the way we fight in a 2045 global conflict depicted in the fictional scenario “Hybrid War 2045.” Concept generation teams were given the design challenge: How might emerging technologies, new operational concepts, and alternative fleet designs contribute to a more effective naval force across the spectrum from competition to conflict? How do the alternative fleet designs enhance the effectiveness and resilience of joint, combined and coalition forces across all domains? Following panel discussions and presentations from leading technical and policy experts, the teams and their embedded facilitators had fourteen hours of scheduled concept generation time to meet that challenge and presented their best concepts on the final morning of the workshop.UNCLASSIFIED//Approved for public release: distribution unlimite
    corecore