93 research outputs found

    A modular triple characterization of circuit signatures

    Get PDF
    AbstractWe study the modular triples of circuits of a matroid and use them to characterize four types of circuit signatures, three of which are known (weak orientations, orientations, and ternary signatures) and one of which is new (lifting signatures). Lifting signatures allow us to specify a linear class of circuits in a matroid, and thereby the lift of the matroid, by labeling the elements from a group in the manner of Dowling and Kelly

    Representing some non-representable matroids

    Get PDF
    We extend the notion of representation of a matroid to algebraic structures that we call skew partial fields. Our definition of such representations extends Tutte's definition, using chain groups. We show how such representations behave under duality and minors, we extend Tutte's representability criterion to this new class, and we study the generator matrices of the chain groups. An example shows that the class of matroids representable over a skew partial field properly contains the class of matroids representable over a skew field. Next, we show that every multilinear representation of a matroid can be seen as a representation over a skew partial field. Finally we study a class of matroids called quaternionic unimodular. We prove a generalization of the Matrix Tree theorem for this class.Comment: 29 pages, 2 figure

    Induced Ramsey-type results and binary predicates for point sets

    Full text link
    Let kk and pp be positive integers and let QQ be a finite point set in general position in the plane. We say that QQ is (k,p)(k,p)-Ramsey if there is a finite point set PP such that for every kk-coloring cc of (Pp)\binom{P}{p} there is a subset QQ' of PP such that QQ' and QQ have the same order type and (Qp)\binom{Q'}{p} is monochromatic in cc. Ne\v{s}et\v{r}il and Valtr proved that for every kNk \in \mathbb{N}, all point sets are (k,1)(k,1)-Ramsey. They also proved that for every k2k \ge 2 and p2p \ge 2, there are point sets that are not (k,p)(k,p)-Ramsey. As our main result, we introduce a new family of (k,2)(k,2)-Ramsey point sets, extending a result of Ne\v{s}et\v{r}il and Valtr. We then use this new result to show that for every kk there is a point set PP such that no function Γ\Gamma that maps ordered pairs of distinct points from PP to a set of size kk can satisfy the following "local consistency" property: if Γ\Gamma attains the same values on two ordered triples of points from PP, then these triples have the same orientation. Intuitively, this implies that there cannot be such a function that is defined locally and determines the orientation of point triples.Comment: 22 pages, 3 figures, final version, minor correction

    COMs: Complexes of Oriented Matroids

    Full text link
    In his seminal 1983 paper, Jim Lawrence introduced lopsided sets and featured them as asymmetric counterparts of oriented matroids, both sharing the key property of strong elimination. Moreover, symmetry of faces holds in both structures as well as in the so-called affine oriented matroids. These two fundamental properties (formulated for covectors) together lead to the natural notion of "conditional oriented matroid" (abbreviated COM). These novel structures can be characterized in terms of three cocircuits axioms, generalizing the familiar characterization for oriented matroids. We describe a binary composition scheme by which every COM can successively be erected as a certain complex of oriented matroids, in essentially the same way as a lopsided set can be glued together from its maximal hypercube faces. A realizable COM is represented by a hyperplane arrangement restricted to an open convex set. Among these are the examples formed by linear extensions of ordered sets, generalizing the oriented matroids corresponding to the permutohedra. Relaxing realizability to local realizability, we capture a wider class of combinatorial objects: we show that non-positively curved Coxeter zonotopal complexes give rise to locally realizable COMs.Comment: 40 pages, 6 figures, (improved exposition

    Representing some non-representable matroids

    Get PDF
    We extend the notion of representation of a matroid to algebraic structures that we call skew partial fields. Our definition of such representations extends Tutte's definition, using chain groups. We show how such representations behave under duality and minors, we extend Tutte's representability criterion to this new class, and we study the generator matrices of the chain groups. An example shows that the class of matroids representable over a skew partial field properly contains the class of matroids representable over a skew field. Next, we show that every multilinear representation of a matroid can be seen as a representation over a skew partial field. Finally we study a class of matroids called quaternionic unimodular. We prove a generalization of the Matrix Tree theorem for this class

    The moduli space of matroids

    Get PDF
    In the first part of the paper, we clarify the connections between several algebraic objects appearing in matroid theory: both partial fields and hyperfields are fuzzy rings, fuzzy rings are tracts, and these relations are compatible with the respective matroid theories. Moreover, fuzzy rings are ordered blueprints and lie in the intersection of tracts with ordered blueprints; we call the objects of this intersection pastures. In the second part, we construct moduli spaces for matroids over pastures. We show that, for any non-empty finite set EE, the functor taking a pasture FF to the set of isomorphism classes of rank-rr FF-matroids on EE is representable by an ordered blue scheme Mat(r,E)Mat(r,E), the moduli space of rank-rr matroids on EE. In the third part, we draw conclusions on matroid theory. A classical rank-rr matroid MM on EE corresponds to a K\mathbb{K}-valued point of Mat(r,E)Mat(r,E) where K\mathbb{K} is the Krasner hyperfield. Such a point defines a residue pasture kMk_M, which we call the universal pasture of MM. We show that for every pasture FF, morphisms kMFk_M\to F are canonically in bijection with FF-matroid structures on MM. An analogous weak universal pasture kMwk_M^w classifies weak FF-matroid structures on MM. The unit group of kMwk_M^w can be canonically identified with the Tutte group of MM. We call the sub-pasture kMfk_M^f of kMwk_M^w generated by ``cross-ratios' the foundation of MM,. It parametrizes rescaling classes of weak FF-matroid structures on MM, and its unit group is coincides with the inner Tutte group of MM. We show that a matroid MM is regular if and only if its foundation is the regular partial field, and a non-regular matroid MM is binary if and only if its foundation is the field with two elements. This yields a new proof of the fact that a matroid is regular if and only if it is both binary and orientable.Comment: 83 page
    corecore