4,849 research outputs found

    Axiomatic Characterization of Data-Driven Influence Measures for Classification

    Full text link
    We study the following problem: given a labeled dataset and a specific datapoint x, how did the i-th feature influence the classification for x? We identify a family of numerical influence measures - functions that, given a datapoint x, assign a numeric value phi_i(x) to every feature i, corresponding to how altering i's value would influence the outcome for x. This family, which we term monotone influence measures (MIM), is uniquely derived from a set of desirable properties, or axioms. The MIM family constitutes a provably sound methodology for measuring feature influence in classification domains; the values generated by MIM are based on the dataset alone, and do not make any queries to the classifier. While this requirement naturally limits the scope of our framework, we demonstrate its effectiveness on data

    Influence in Classification via Cooperative Game Theory

    Full text link
    A dataset has been classified by some unknown classifier into two types of points. What were the most important factors in determining the classification outcome? In this work, we employ an axiomatic approach in order to uniquely characterize an influence measure: a function that, given a set of classified points, outputs a value for each feature corresponding to its influence in determining the classification outcome. We show that our influence measure takes on an intuitive form when the unknown classifier is linear. Finally, we employ our influence measure in order to analyze the effects of user profiling on Google's online display advertising.Comment: accepted to IJCAI 201

    Altitude Training: Strong Bounds for Single-Layer Dropout

    Full text link
    Dropout training, originally designed for deep neural networks, has been successful on high-dimensional single-layer natural language tasks. This paper proposes a theoretical explanation for this phenomenon: we show that, under a generative Poisson topic model with long documents, dropout training improves the exponent in the generalization bound for empirical risk minimization. Dropout achieves this gain much like a marathon runner who practices at altitude: once a classifier learns to perform reasonably well on training examples that have been artificially corrupted by dropout, it will do very well on the uncorrupted test set. We also show that, under similar conditions, dropout preserves the Bayes decision boundary and should therefore induce minimal bias in high dimensions.Comment: Advances in Neural Information Processing Systems (NIPS), 201

    The Dirichlet Problem for Harmonic Functions on Compact Sets

    Full text link
    For any compact set K⊂RnK\subset \mathbb{R}^n we develop the theory of Jensen measures and subharmonic peak points, which form the set OK\mathcal{O}_K, to study the Dirichlet problem on KK. Initially we consider the space h(K)h(K) of functions on KK which can be uniformly approximated by functions harmonic in a neighborhood of KK as possible solutions. As in the classical theory, our Theorem 8.1 shows C(OK)≅h(K)C(\mathcal{O}_K)\cong h(K) for compact sets with OK\mathcal{O}_K closed. However, in general a continuous solution cannot be expected even for continuous data on \rO_K as illustrated by Theorem 8.1. Consequently, we show that the solution can be found in a class of finely harmonic functions. Moreover by Theorem 8.7, in complete analogy with the classical situation, this class is isometrically isomorphic to Cb(OK)C_b(\mathcal{O}_K) for all compact sets KK.Comment: There have been a large number of changes made from the first version. They mostly consists of shortening the article and supplying additional reference

    Partial separability revisited: Necessary and sufficient criteria

    Full text link
    We extend the classification of mixed states of quantum systems composed of arbitrary number of subsystems of arbitrary dimensions. This extended classification is complete in the sense of partial separability and gives 1+18+1 partial separability classes in the tripartite case contrary to a former 1+8+1. Then we give necessary and sufficient criteria for these classes, which make it possible to determine to which class a mixed state belongs. These criteria are given by convex roof extensions of functions defined on pure states. In the special case of three-qubit systems, we define a different set of such functions with the help of the Freudenthal triple system approach of three-qubit entanglement.Comment: v3: 22 pages, 5 tables, 1 figure, minor corrections (typos), clarification in the Introduction. Accepted in Phys. Rev. A. Comments are welcom

    Uncertainty in Economic Growth and Inequality

    Full text link
    A step to consilience, starting with a deconstruction of the causality of uncertainty that is embedded in the fundamentals of growth and inequality, following a construction of aggregation laws that disclose the invariance principle across heterogeneous individuals, ending with a reconstruction of metric models that yields deeper structural connections via U.S. GDP and income data

    Capturing Complementarity in Set Functions by Going Beyond Submodularity/Subadditivity

    Get PDF
    We introduce two new "degree of complementarity" measures: supermodular width and superadditive width. Both are formulated based on natural witnesses of complementarity. We show that both measures are robust by proving that they, respectively, characterize the gap of monotone set functions from being submodular and subadditive. Thus, they define two new hierarchies over monotone set functions, which we will refer to as Supermodular Width (SMW) hierarchy and Superadditive Width (SAW) hierarchy, with foundations - i.e. level 0 of the hierarchies - resting exactly on submodular and subadditive functions, respectively. We present a comprehensive comparative analysis of the SMW hierarchy and the Supermodular Degree (SD) hierarchy, defined by Feige and Izsak. We prove that the SMW hierarchy is strictly more expressive than the SD hierarchy: Every monotone set function of supermodular degree d has supermodular width at most d, and there exists a supermodular-width-1 function over a ground set of m elements whose supermodular degree is m-1. We show that previous results regarding approximation guarantees for welfare and constrained maximization as well as regarding the Price of Anarchy (PoA) of simple auctions can be extended without any loss from the supermodular degree to the supermodular width. We also establish almost matching information-theoretical lower bounds for these two well-studied fundamental maximization problems over set functions. The combination of these approximation and hardness results illustrate that the SMW hierarchy provides not only a natural notion of complementarity, but also an accurate characterization of "near submodularity" needed for maximization approximation. While SD and SMW hierarchies support nontrivial bounds on the PoA of simple auctions, we show that our SAW hierarchy seems to capture more intrinsic properties needed to realize the efficiency of simple auctions. So far, the SAW hierarchy provides the best dependency for the PoA of Single-bid Auction, and is nearly as competitive as the Maximum over Positive Hypergraphs (MPH) hierarchy for Simultaneous Item First Price Auction (SIA). We also provide almost tight lower bounds for the PoA of both auctions with respect to the SAW hierarchy
    • …
    corecore