428 research outputs found

    A characterization of entanglement-assisted quantum low-density parity-check codes

    Get PDF
    As in classical coding theory, quantum analogues of low-density parity-check (LDPC) codes have offered good error correction performance and low decoding complexity by employing the Calderbank-Shor-Steane (CSS) construction. However, special requirements in the quantum setting severely limit the structures such quantum codes can have. While the entanglement-assisted stabilizer formalism overcomes this limitation by exploiting maximally entangled states (ebits), excessive reliance on ebits is a substantial obstacle to implementation. This paper gives necessary and sufficient conditions for the existence of quantum LDPC codes which are obtainable from pairs of identical LDPC codes and consume only one ebit, and studies the spectrum of attainable code parameters.Comment: 7 pages, no figures, final accepted version for publication in the IEEE Transactions on Information Theor

    Adaptively correcting quantum errors with entanglement

    Full text link
    Contrary to the assumption that most quantum error-correcting codes (QECC) make, it is expected that phase errors are much more likely than bit errors in physical devices. By employing the entanglement-assisted stabilizer formalism, we develop a new kind of error-correcting protocol which can flexibly trade error correction abilities between the two types of errors, such that high error correction performance is achieved both in symmetric and in asymmetric situations. The characteristics of the QECCs can be optimized in an adaptive manner during information transmission. The proposed entanglement-assisted QECCs require only one ebit regardless of the degree of asymmetry at a given moment and can be decoded in polynomial time.Comment: 5 pages, final submission to ISIT 2011, Saint-Petersburg, Russi

    Catalytic quantum error correction

    Get PDF
    We develop the theory of entanglement-assisted quantum error correcting (EAQEC) codes, a generalization of the stabilizer formalism to the setting in which the sender and receiver have access to pre-shared entanglement. Conventional stabilizer codes are equivalent to dual-containing symplectic codes. In contrast, EAQEC codes do not require the dual-containing condition, which greatly simplifies their construction. We show how any quaternary classical code can be made into a EAQEC code. In particular, efficient modern codes, like LDPC codes, which attain the Shannon capacity, can be made into EAQEC codes attaining the hashing bound. In a quantum computation setting, EAQEC codes give rise to catalytic quantum codes which maintain a region of inherited noiseless qubits. We also give an alternative construction of EAQEC codes by making classical entanglement assisted codes coherent.Comment: 30 pages, 10 figures. Notation change: [[n,k;c]] instead of [[n,k-c;c]

    High-Rate Quantum Low-Density Parity-Check Codes Assisted by Reliable Qubits

    Get PDF
    Quantum error correction is an important building block for reliable quantum information processing. A challenging hurdle in the theory of quantum error correction is that it is significantly more difficult to design error-correcting codes with desirable properties for quantum information processing than for traditional digital communications and computation. A typical obstacle to constructing a variety of strong quantum error-correcting codes is the complicated restrictions imposed on the structure of a code. Recently, promising solutions to this problem have been proposed in quantum information science, where in principle any binary linear code can be turned into a quantum error-correcting code by assuming a small number of reliable quantum bits. This paper studies how best to take advantage of these latest ideas to construct desirable quantum error-correcting codes of very high information rate. Our methods exploit structured high-rate low-density parity-check codes available in the classical domain and provide quantum analogues that inherit their characteristic low decoding complexity and high error correction performance even at moderate code lengths. Our approach to designing high-rate quantum error-correcting codes also allows for making direct use of other major syndrome decoding methods for linear codes, making it possible to deal with a situation where promising quantum analogues of low-density parity-check codes are difficult to find

    Applications of finite geometries to designs and codes

    Get PDF
    This dissertation concerns the intersection of three areas of discrete mathematics: finite geometries, design theory, and coding theory. The central theme is the power of finite geometry designs, which are constructed from the points and t-dimensional subspaces of a projective or affine geometry. We use these designs to construct and analyze combinatorial objects which inherit their best properties from these geometric structures. A central question in the study of finite geometry designs is Hamada’s conjecture, which proposes that finite geometry designs are the unique designs with minimum p-rank among all designs with the same parameters. In this dissertation, we will examine several questions related to Hamada’s conjecture, including the existence of counterexamples. We will also study the applicability of certain decoding methods to known counterexamples. We begin by constructing an infinite family of counterexamples to Hamada’s conjecture. These designs are the first infinite class of counterexamples for the affine case of Hamada’s conjecture. We further demonstrate how these designs, along with the projective polarity designs of Jungnickel and Tonchev, admit majority-logic decoding schemes. The codes obtained from these polarity designs attain error-correcting performance which is, in certain cases, equal to that of the finite geometry designs from which they are derived. This further demonstrates the highly geometric structure maintained by these designs. Finite geometries also help us construct several types of quantum error-correcting codes. We use relatives of finite geometry designs to construct infinite families of q-ary quantum stabilizer codes. We also construct entanglement-assisted quantum error-correcting codes (EAQECCs) which admit a particularly efficient and effective error-correcting scheme, while also providing the first general method for constructing these quantum codes with known parameters and desirable properties. Finite geometry designs are used to give exceptional examples of these codes

    Construction and Performance of Quantum Burst Error Correction Codes for Correlated Errors

    Full text link
    © 2018 IEEE. In practical communication and computation systems, errors occur predominantly in adjacent positions rather than in a random manner. In this paper, we develop a stabilizer formalism for quantum burst error correction codes (QBECC) to combat such error patterns in the quantum regime. Our contributions are as follows. Firstly, we derive an upper bound for the correctable burst errors of QBECCs, the quantum Reiger bound (QRB). Secondly, we propose two constructions of QBECCs: one by heuristic computer search and the other by concatenating two quantum tensor product codes (QTPCs). We obtain several new QBECCs with better parameters than existing codes with the same coding length. Moreover, some of the constructed codes can saturate the quantum Reiger bounds. Finally, we perform numerical experiments for our constructed codes over Markovian correlated depolarizing quantum memory channels, and show that QBECCs indeed outperform standard QECCs in this scenario

    Quantum networks with chiral light--matter interaction in waveguides

    Full text link
    We propose a scalable architecture for a quantum network based on a simple on-chip photonic circuit that performs loss-tolerant two-qubit measurements. The circuit consists of two quantum emitters positioned in the arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral light--matter interfaces. The efficient chiral light--matter interaction allows the emitters to perform high-fidelity intranode two-qubit parity measurements within a single chip, and to emit photons to generate internode entanglement, without any need for reconfiguration. We show that by connecting multiple circuits of this kind into a quantum network, it is possible to perform universal quantum computation with heralded two-qubit gate fidelities F0.998{\cal F} \sim 0.998 achievable in state-of-the-art quantum dot systems.Comment: 5 pages plus supplementary materia

    Fifteen years of quantum LDPC coding and improved decoding strategies

    No full text
    The near-capacity performance of classical low-density parity check (LDPC) codes and their efficient iterative decoding makes quantum LDPC (QLPDC) codes a promising candidate for quantum error correction. In this paper, we present a comprehensive survey of QLDPC codes from the perspective of code design as well as in terms of their decoding algorithms. We also conceive a modified non-binary decoding algorithm for homogeneous Calderbank-Shor-Steane-type QLDPC codes, which is capable of alleviating the problems imposed by the unavoidable length-four cycles. Our modified decoder outperforms the state-of-the-art decoders in terms of their word error rate performance, despite imposing a reduced decoding complexity. Finally, we intricately amalgamate our modified decoder with the classic uniformly reweighted belief propagation for the sake of achieving an improved performance
    corecore