1,025 research outputs found

    Bidimensionality and EPTAS

    Full text link
    Bidimensionality theory is a powerful framework for the development of metaalgorithmic techniques. It was introduced by Demaine et al. as a tool to obtain sub-exponential time parameterized algorithms for problems on H-minor free graphs. Demaine and Hajiaghayi extended the theory to obtain PTASs for bidimensional problems, and subsequently improved these results to EPTASs. Fomin et. al related the theory to the existence of linear kernels for parameterized problems. In this paper we revisit bidimensionality theory from the perspective of approximation algorithms and redesign the framework for obtaining EPTASs to be more powerful, easier to apply and easier to understand. Two of the most widely used approaches to obtain PTASs on planar graphs are the Lipton-Tarjan separator based approach, and Baker's approach. Demaine and Hajiaghayi strengthened both approaches using bidimensionality and obtained EPTASs for a multitude of problems. We unify the two strenghtened approaches to combine the best of both worlds. At the heart of our framework is a decomposition lemma which states that for "most" bidimensional problems, there is a polynomial time algorithm which given an H-minor-free graph G as input and an e > 0 outputs a vertex set X of size e * OPT such that the treewidth of G n X is f(e). Here, OPT is the objective function value of the problem in question and f is a function depending only on e. This allows us to obtain EPTASs on (apex)-minor-free graphs for all problems covered by the previous framework, as well as for a wide range of packing problems, partial covering problems and problems that are neither closed under taking minors, nor contractions. To the best of our knowledge for many of these problems including cycle packing, vertex-h-packing, maximum leaf spanning tree, and partial r-dominating set no EPTASs on planar graphs were previously known

    Minimum Degree up to Local Complementation: Bounds, Parameterized Complexity, and Exact Algorithms

    Full text link
    The local minimum degree of a graph is the minimum degree that can be reached by means of local complementation. For any n, there exist graphs of order n which have a local minimum degree at least 0.189n, or at least 0.110n when restricted to bipartite graphs. Regarding the upper bound, we show that for any graph of order n, its local minimum degree is at most 3n/8+o(n) and n/4+o(n) for bipartite graphs, improving the known n/2 upper bound. We also prove that the local minimum degree is smaller than half of the vertex cover number (up to a logarithmic term). The local minimum degree problem is NP-Complete and hard to approximate. We show that this problem, even when restricted to bipartite graphs, is in W[2] and FPT-equivalent to the EvenSet problem, which W[1]-hardness is a long standing open question. Finally, we show that the local minimum degree is computed by a O*(1.938^n)-algorithm, and a O*(1.466^n)-algorithm for the bipartite graphs

    On highly regular strongly regular graphs

    Get PDF
    In this paper we unify several existing regularity conditions for graphs, including strong regularity, kk-isoregularity, and the tt-vertex condition. We develop an algebraic composition/decomposition theory of regularity conditions. Using our theoretical results we show that a family of non rank 3 graphs known to satisfy the 77-vertex condition fulfills an even stronger condition, (3,7)(3,7)-regularity (the notion is defined in the text). Derived from this family we obtain a new infinite family of non rank 33 strongly regular graphs satisfying the 66-vertex condition. This strengthens and generalizes previous results by Reichard.Comment: 29 page

    Rainbow domination and related problems on some classes of perfect graphs

    Full text link
    Let k∈Nk \in \mathbb{N} and let GG be a graph. A function f:V(G)→2[k]f: V(G) \rightarrow 2^{[k]} is a rainbow function if, for every vertex xx with f(x)=∅f(x)=\emptyset, f(N(x))=[k]f(N(x)) =[k]. The rainbow domination number γkr(G)\gamma_{kr}(G) is the minimum of ∑x∈V(G)∣f(x)∣\sum_{x \in V(G)} |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs

    Parametrized Complexity of Weak Odd Domination Problems

    Full text link
    Given a graph G=(V,E)G=(V,E), a subset B⊆VB\subseteq V of vertices is a weak odd dominated (WOD) set if there exists D⊆V∖BD \subseteq V {\setminus} B such that every vertex in BB has an odd number of neighbours in DD. κ(G)\kappa(G) denotes the size of the largest WOD set, and κ′(G)\kappa'(G) the size of the smallest non-WOD set. The maximum of κ(G)\kappa(G) and ∣V∣−κ′(G)|V|-\kappa'(G), denoted κQ(G)\kappa_Q(G), plays a crucial role in quantum cryptography. In particular deciding, given a graph GG and k>0k>0, whether κQ(G)≤k\kappa_Q(G)\le k is of practical interest in the design of graph-based quantum secret sharing schemes. The decision problems associated with the quantities κ\kappa, κ′\kappa' and κQ\kappa_Q are known to be NP-Complete. In this paper, we consider the approximation of these quantities and the parameterized complexity of the corresponding problems. We mainly prove the fixed-parameter intractability (W[1][1]-hardness) of these problems. Regarding the approximation, we show that κQ\kappa_Q, κ\kappa and κ′\kappa' admit a constant factor approximation algorithm, and that κ\kappa and κ′\kappa' have no polynomial approximation scheme unless P=NP.Comment: 16 pages, 5 figure
    • …
    corecore