7,173 research outputs found

    Contributions of plasma physics to chaos and nonlinear dynamics

    Full text link
    This topical review focusses on the contributions of plasma physics to chaos and nonlinear dynamics bringing new methods which are or can be used in other scientific domains. It starts with the development of the theory of Hamiltonian chaos, and then deals with order or quasi order, for instance adiabatic and soliton theories. It ends with a shorter account of dissipative and high dimensional Hamiltonian dynamics, and of quantum chaos. Most of these contributions are a spin-off of the research on thermonuclear fusion by magnetic confinement, which started in the fifties. Their presentation is both exhaustive and compact. [15 April 2016

    Sterile neutrinos in cosmology

    Full text link
    Sterile neutrinos are natural extensions to the standard model of particle physics in neutrino mass generation mechanisms. If they are relatively light, less than approximately 10 keV, they can alter cosmology significantly, from the early Universe to the matter and radiation energy density today. Here, we review the cosmological role such light sterile neutrinos can play from the early Universe, including production of keV-scale sterile neutrinos as dark matter candidates, and dynamics of light eV-scale sterile neutrinos during the weakly-coupled active neutrino era. We review proposed signatures of light sterile neutrinos in cosmic microwave background and large scale structure data. We also discuss keV-scale sterile neutrino dark matter decay signatures in X-ray observations, including recent candidate āˆ¼\sim3.5 keV X-ray line detections consistent with the decay of a āˆ¼\sim7 keV sterile neutrino dark matter particle.Comment: Accepted version of an invited review for Physics Reports. 33 pages, 7 figures, approximately 16,000 words; v3: expanded discussion of low reheating temperature universe models with a new figure, large scale structure effects, scalar decay model

    Improved model identification for nonlinear systems using a random subsampling and multifold modelling (RSMM) approach

    Get PDF
    In nonlinear system identification, the available observed data are conventionally partitioned into two parts: the training data that are used for model identification and the test data that are used for model performance testing. This sort of ā€˜hold-outā€™ or ā€˜split-sampleā€™ data partitioning method is convenient and the associated model identification procedure is in general easy to implement. The resultant model obtained from such a once-partitioned single training dataset, however, may occasionally lack robustness and generalisation to represent future unseen data, because the performance of the identified model may be highly dependent on how the data partition is made. To overcome the drawback of the hold-out data partitioning method, this study presents a new random subsampling and multifold modelling (RSMM) approach to produce less biased or preferably unbiased models. The basic idea and the associated procedure are as follows. Firstly, generate K training datasets (and also K validation datasets), using a K-fold random subsampling method. Secondly, detect significant model terms and identify a common model structure that fits all the K datasets using a new proposed common model selection approach, called the multiple orthogonal search algorithm. Finally, estimate and refine the model parameters for the identified common-structured model using a multifold parameter estimation method. The proposed method can produce robust models with better generalisation performance

    A Clustering Approach Based on Charged Particles

    Get PDF
    In pattern recognition, clustering is a powerful technique that can be used to find the identical group of objects from a given dataset. It has proven its importance in various domains such as bioinformatics, machine learning, pattern recognition, document clustering, and so on. But, in clustering, it is difficult to determine the optimal cluster centers in a given set of data. So, in this paper, a new method called magnetic charged system search (MCSS) is applied to determine the optimal cluster centers. This method is based on the behavior of charged particles. The proposed method employs the electric force and magnetic force to initiate the local search while Newton second law of motion is employed for global search. The performance of the proposed algorithm is tested on several datasets which are taken from UCI repository and compared with the other existing methods like K-Means, GA, PSO, ACO, and CSS. The experimental results prove the applicability of the proposed method in clustering domain

    Optimal allocation of distributed generation and electric vehicle charging stations based on intelligent algorithm and biā€level programming

    Full text link
    To facilitate the development of active distribution networks with high penetration of largeā€scale distributed generation (DG) and electric vehicles (EVs), active management strategies should be considered at the planning stage to implement the coordinated optimal allocations of DG and electric vehicle charging stations (EVCSs). In this article, EV charging load curves are obtained by the Monte Carlo simulation method. This article reduces the number of photovoltaic outputs and load scenarios by the Kā€means++ clustering algorithm to obtain a typical scenario set. Additionally, we propose a biā€level programming model for the coordinated DG and EVCSs planning problem. The maximisation of annual overall profit for the power supply company is taken as the objective function for the upper planning level. Then, each scenario is optimised at the lower level by using active management strategies. The improved harmonic particle swarm optimisation algorithm is used to solve the biā€level model. The validation results for the IEEEā€33 node, PG&Eā€69 node test system and an actual regional 30ā€node distribution network show that the biā€level programming model proposed in this article can improve the planning capacity of DG and EVCSs, and effectively increase the annual overall profit of the power supply company, while improving environmental and social welfare, and reducing system power losses and voltage shifts. The study provides a new perspective on the distribution network planning problem.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155928/1/etep12366.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155928/2/etep12366_am.pd

    A Peculiar Family of Jupiter Trojans: the Eurybates

    Get PDF
    The Eurybates family is a compact core inside the Menelaus clan, located in the L4 swarm of Jupiter Trojans. Fornasier et al. (2007) found that this family exhibits a peculiar abundance of spectrally flat objects, similar to Chiron-like Centaurs and C-type main belt asteroids. On the basis of the visible spectra available in literature, Eurybates family's members seemed to be good candidates for having on their surfaces water/water ice or aqueous altered materials. To improve our knowledge of the surface composition of this peculiar family, we carried out an observational campaign at the Telescopio Nazionale Galileo (TNG), obtaining near-infrared spectra of 7 members. Our data show a surprisingly absence of any spectral feature referable to the presence of water, ices or aqueous altered materials on the surface of the observed objects. Models of the surface composition are attempted, evidencing that amorphous carbon seems to dominate the surface composition of the observed bodies and some amount of silicates (olivine) could be present.Comment: 23 pages, 2 figures, paper accepted for publication in Icaru

    Improved model identification for non-linear systems using a random subsampling and multifold modelling (RSMM) approach

    Get PDF
    In non-linear system identification, the available observed data are conventionally partitioned into two parts: the training data that are used for model identification and the test data that are used for model performance testing. This sort of 'hold-out' or 'split-sample' data partitioning method is convenient and the associated model identification procedure is in general easy to implement. The resultant model obtained from such a once-partitioned single training dataset, however, may occasionally lack robustness and generalisation to represent future unseen data, because the performance of the identified model may be highly dependent on how the data partition is made. To overcome the drawback of the hold-out data partitioning method, this study presents a new random subsampling and multifold modelling (RSMM) approach to produce less biased or preferably unbiased models. The basic idea and the associated procedure are as follows. First, generate K training datasets (and also K validation datasets), using a K-fold random subsampling method. Secondly, detect significant model terms and identify a common model structure that fits all the K datasets using a new proposed common model selection approach, called the multiple orthogonal search algorithm. Finally, estimate and refine the model parameters for the identified common-structured model using a multifold parameter estimation method. The proposed method can produce robust models with better generalisation performance
    • ā€¦
    corecore