132 research outputs found

    WIMAX Basics from PHY Layer to Scheduling and Multicasting Approaches

    Get PDF
    WiMAX (Worldwide Interoperability for Microwave Access) is an emerging broadband wireless technology for providing Last mile solutions for supporting higher bandwidth and multiple service classes with various quality of service requirement. The unique architecture of the WiMAX MAC and PHY layers that uses OFDMA to allocate multiple channels with different modulation schema and multiple time slots for each channel allows better adaptation of heterogeneous user’s requirements. The main architecture in WiMAX uses PMP (Point to Multipoint), Mesh mode or the new MMR (Mobile Multi hop Mode) deployments where scheduling and multicasting have different approaches. In PMP SS (Subscriber Station) connects directly to BS (Base Station) in a single hop route so channel conditions adaptations and supporting QoS for classes of services is the key points in scheduling, admission control or multicasting, while in Mesh networks SS connects to other SS Stations or to the BS in a multi hop routes, the MMR mode extends the PMP mode in which the SS connects to either a relay station (RS) or to Bs. Both MMR and Mesh uses centralized or distributed scheduling with multicasting schemas based on scheduling trees for routing. In this paper a broad study is conducted About WiMAX technology PMP and Mesh deployments from main physical layers features with differentiation of MAC layer features to scheduling and multicasting approaches in both modes of operations

    Simulation of Relay modes in IEEE 802.16j Mobile Multi-hop Relay (MMR) WIMAX Networks

    Get PDF
    Two different relay modes are defined in IEEE 802.16j WIMAX standard: transparent mode and non-transparent mode. The non transparent mode is used to extend the coverage area of base stations, where low cost relay station of equal capacity as that of base station is placed at suitable position. Time taken to accept mobile stations and Bandwidth allocation are main problems in non transparent mode. In this we have studied the IEEE 802.16j standard multi hop relay WIMAX networks. We have used relay stations to extend the coverage of base stations. We have also analyzed the throughput between mobile stations with in the coverage area and outside coverage area of base stations. We have simulated the IEEE 802.16j transparent and non transparent mode multi hop WIMAX relay networks using NCTUns Too

    WIMAX LINK PERFORMANCE ANALYSIS FOR WIRELESS AUTOMATION APPLICATIONS

    Get PDF
    Wireless broadband access technologies are rapidly growing and a corresponding growth in the demand of its applicability transcends faster internet access, high speed file download and different multimedia applications such as voice calls, video streaming, teleconferencing etc, to industrial operations and automation. Industrial and automation systems perform operations that requires the transmission of real time information from one end to another through high-performance wireless broadband communication links. WiMAX, based on IEEE 802.16 standard is one of the wireless broadband access technologies that has overcome location, speed, and access limitations of the traditional Digital Subscriber Line and Wireless Fidelity, and offers high efficient data rates. This thesis presents detailed analysis of operational WiMAX link performance parameters such as throughput, latency, jitter, and packet loss for suitable applicability in wireless automation applications. The theoretical background of components and functionalities of WiMAX physical and MAC layers as well as the network performance features are presented. The equipment deployed for this field experiment are Alvarion BreeZeMAX 3000 fixed WiMAX equipment operating in the 3.5 GHz licensed band with channel bandwidth of 3.5 MHz. The deployed equipment consisting of MBSE and CPE are installed and commissioned prior to field tests. Several measurements are made in three link quality scenarios (sufficient, good and excellent) in the University of Vaasa campus. Observations and results obtained are discussed and analyzed.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Security-centric analysis and performance investigation of IEEE 802.16 WiMAX

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Assessment and Real Time Implementation of Wireless Communications Systems and Applications in Transportation Systems

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e das Comunicacións en Redes Móbiles. 5029V01[Resumo] Os sistemas de comunicación sen fíos de cuarta e quinta xeración (4G e 5G) utilizan unha capa física (PHY) baseada en modulacións multiportadora para a transmisión de datos cun gran ancho de banda. Este tipo de modulacións proporcionan unha alta eficiencia espectral á vez que permiten corrixir de forma sinxela os efectos da canle radio. Estes sistemas utilizan OFDMA como mecanismo para a repartición dos recursos radio dispoñibles entre os diferentes usuarios. Este repartimento realízase asignando un subconxunto de subportadoras a cada usuario nun instante de tempo determinado. Isto aporta unha gran flexibilidade ó sistema que lle permite adaptarse tanto ós requisitos de calidade de servizo dos usuarios como ó estado da canle radio. A capa de acceso ó medio (MAC) destes sistemas encárgase de configurar os diversos parámetros proporcionados pola capa física OFDMA, ademais de xestionar os diversos fluxos de información de cada usuario, transformando os paquetes de capas superiores en paquetes da capa física. Neste traballo estúdase o deseño e implementación das capas MAC e PHY de sistemas de comunicación 4G ademais da súa aplicabilidade en sistemas de transporte ferroviarios. Por unha parte, abórdase o deseño e implementación en tempo real do estándar WiMAX. Estúdanse os mecanismos necesarios para establecer comunicacións bidireccionais entre unha estación base e múltiples dispositivos móbiles. Ademais, estúdase como realizar esta implementación nunha arquitectura hardware baseada en DSPs e FPGAs, na que se implementan as capas MAC e PHY. Dado que esta arquitectura ten uns recursos computacionais limitados, tamén se estudan as necesidades de cada módulo do sistema para poder garantir o funcionamento en tempo real do sistema completo. Por outra parte, tamén se estuda a aplicabilidade dos sistemas 4G a sistemas de transporte públicos. Os sistemas de comunicacións e sinalización son unha parte vital para os sistemas de transporte ferroviario e metro. As comunicacións sen fíos utilizadas por estes sistemas deben ser robustas e proporcionar unha alta fiabilidade para permitir a supervisión, control e seguridade do tráfico ferroviario. Para levar a cabo esta avaliación de viabilidade realízanse simulacións de redes de comunicacións LTE en contornos de transporte ferroviarios, comprobando o cumprimento dos requisitos de fiabilidade e seguridade. Realízanse diferentes simulacións do sistema de comunicacións para poder ser avaliadas e seleccionar a configuración e arquitectura do sistema máis axeitada en función do escenario considerado. Tamén se efectúan simulacións de redes baseadas en Wi-Fi, dado que é a solución máis utilizada nos metros, para confrontar os resultados cos obtidos para LTE. Para que os resultados das simulacións sexan realistas débense empregar modelos de propagación radio axeitados. Nas simulacións utilízanse tanto modelos deterministas como modelos baseados nos resultados de campañas de medida realizadas nestes escenarios. Nas simulacións empréganse os diferentes fluxos de información destes escenarios para comprobar que se cumpren os requisitos de calidade de servicio (QoS). Por exemplo, os fluxos críticos para o control ferroviario, como European Train Control System (ETCS) ou Communication-Based Train Control (CBTC), necesitan unha alta fiabilidade e un retardo mínimo nas comunicacións para garantir o correcto funcionamento do sistema.[Resumen] Los sistemas de comunicación inalámbricos de cuarta y quinta generación (4G y 5G) utilizan una capa física (PHY) basada en modulaciones multiportadora para la transmisión de datos con un gran ancho de banda. Este tipo de modulaciones han demostrado tener una alta eficiencia espectral a la vez que permiten corregir de forma sencilla los efectos del canal radio. Estos sistemas utilizan OFDMA como mecanismo para el reparto de los recursos radio disponibles entre los diferentes usuarios. Este reparto se realiza asignando un subconjunto de subportadoras a cada usuario en un instante de tiempo determinado. Esto aporta una gran flexibilidad al sistema que le permite adaptarse tanto a los requisitos de calidad de servicio de los usuarios como al estado del canal radio. La capa de acceso al medio (MAC) de estos sistemas se encarga de configurar los diversos parámetros proporcionados por la capa física OFDMA, además de gestionar los diversos flujos de información de cada usuario, transformando los paquetes de capas superiores en paquetes de la capa física. En este trabajo se estudia el diseño e implementación de las capas MAC y PHY de sistemas de comunicación 4G además de su aplicabilidad en sistemas de transporte ferroviarios. Por una parte, se aborda el diseño e implementación en tiempo real del estándar WiMAX. Se estudian los mecanismos necesarios para establecer comunicaciones bidireccionales entre una estación base y múltiples dispositivos móviles. Además, se estudia cómo realizar esta implementación en una arquitectura hardware basada en DSPs y FPGAs, en la que se implementan las capas MAC y PHY. Dado que esta arquitectura tiene unos recursos computacionales limitados, también se estudian las necesidades de cada módulo del sistema para poder garantizar el funcionamiento en tiempo real del sistema completo. Por otra parte, también se estudia la aplicabilidad de los sistemas 4G a sistemas de transporte públicos. Los sistemas de comunicaciones y señalización son una parte vital para los sistemas de transporte ferroviario y metro. Las comunicaciones inalámbricas utilizadas por estos sistemas deben ser robustas y proporcionar una alta fiabilidad para permitir la supervisión, control y seguridad del tráfico ferroviario. Para llevar a cabo esta evaluación de viabilidad se realizan simulaciones de redes de comunicaciones LTE en entornos de transporte ferroviarios, comprobando si se cumplen los requisitos de fiabilidad y seguridad. Se realizan diferentes simulaciones del sistema de comunicaciones para poder ser evaluados y seleccionar la configuración y arquitectura del sistema más adecuada en función del escenario planteado. También se efectúan simulaciones de redes basadas en Wi-Fi, dado que es la solución más utilizada en los metros, para comparar los resultados con los obtenidos para LTE. Para que los resultados de las simulaciones sean realistas se deben utilizar modelos de propagación radio apropiados. En las simulaciones se utilizan tanto modelos deterministas como modelos basados en los resultados de campañas de medida realizadas en estos escenarios. En las simulaciones se utilizan los diferentes flujos de información de estos escenarios para comprobar que se cumplen sus requisitos de calidad de servicio. Por ejemplo, los flujos críticos para el control ferroviario, como European Train Control System (ETCS) o Communication-Based Train Control (CBTC), necesitan una alta fiabilidad y un retardo bajo en las comunicaciones para garantizar el correcto funcionamiento del sistema.[Abstract] The fourth and fifth generation wireless communication systems (4G and 5G) use a physical layer (PHY) based on multicarrier modulations for data transmission using high bandwidth. This type of modulations has shown to provide high spectral efficiency while allowing low complexity radio channel equalization. These systems use OFDMA as a mechanism for distributing the available radio resources among different users. This allocation is done by assigning a subset of subcarriers to each user in a given instant of time. This provides great flexibility to the system that allows it to adapt to both the quality of service requirements of users and the radio channel state. The media access layer (MAC) of these systems is in charge of configuring the multiple OFDMA PHY layer parameters, in addition to managing the data flows of each user, transforming the higher layer packets into PHY layer packets. This work studies the design and implementation of MAC and PHY layers of 4G communication systems as well as their applicability in rail transport systems. On the one hand, the design and implementation in real time of the WiMAX standard is addressed. The required mechanisms to establish bidirectional communications between a base station and several mobile devices are also evaluated. Moreover, a MAC layer and PHY layer implementation is presented, using a hardware architecture based in DSPs and FPGAs. Since this architecture has limited computational resources, the requirements of each processing block of the system are also studied in order to guarantee the real time operation of the complete system. On the other hand, the applicability of 4G systems to public transportation systems is also studied. Communications and signaling systems are a vital part of rail and metro transport systems. The wireless communications used by these systems must be robust and provide high reliability to enable the supervision, control and safety of rail traffic. To carry out this feasibility assessment, LTE communications network simulations are performed in rail transport environments to verify that reliability and safety requirements are met. Several simulations are carried out in order to evaluate the system performance and select the most appropriate system configuration in each case. Simulations of Wi-Fi based networks are also carried out, since it is the most used solution in subways, to compare the results with those obtained for LTE. To perform the simulations correctly, appropriate radio propagation models must be used. Both deterministic models and models based on the results of measurement campaigns in these scenarios are used in the simulations. The simulations use the different information flows present in the railway transportation systems to verify that its quality of service requirements are met. For example, critical flows for railway control, such as the European Train Control System (ETCS) or Communication-Based Train Control (CBTC), require high reliability and low delay communications to ensure the proper functioning of the system

    A Survey on Scheduling in IEEE 802.16 Mesh Mode

    Get PDF
    Cataloged from PDF version of article.IEEE 802.16 standard (also known as WiMAX) defines the wireless broadband network technology which aims to solve the so called last mile problem via providing high bandwidth Internet even to the rural areas for which the cable deployment is very costly. The standard mainly focuses on the MAC and PHY layer issues, supporting two transmission modes: PMP (Point-to-Multipoint) and mesh modes. Mesh mode is an optional mode developed as an extension to PMP mode and it has the advantage of having an improving performance as more subscribers are added to the system using multi-hop routes. In 802.16 MAC protocol, mesh mode slot allocation and reservation mechanisms are left open which makes this topic a hot research area. Hence, the focus of this survey will mostly be on the mesh mode, and the proposed scheduling algorithms and performance evaluation methods
    corecore