1,514 research outputs found

    A Channel Model for Wireless Underground Sensor Networks Using Lateral Waves

    Get PDF
    Wireless Underground Sensor Networks (WUSNs) are an emerging type of wireless sensor networks (WSNs), where sensor nodes are located under the ground and communicate through soil. The major challenge in the development of efficient communication protocols for WUSNs is the characterization of the underground channel. So far, none of the existing models fully capture all the components of electromagnetic signal propagation in the soil medium. In this paper, three major components that influence underground communication are identified: direct, reflected, and lateral waves, where the latter has not been analyzed for WUSNs so far. Accordingly, a closed-form three-wave (3W) channel model is developed based on EM propagation principles of signals through soil. The 3W channel model is shown to agree well with both underground testbed experiments and EM analysis based on Maxwell’s equations, which cannot be represented in closed-form

    A Channel Model for Wireless Underground Sensor Networks Using Lateral Waves

    Get PDF
    Wireless Underground Sensor Networks (WUSNs) are an emerging type of wireless sensor networks (WSNs), where sensor nodes are located under the ground and communicate through soil. The major challenge in the development of efficient communication protocols for WUSNs is the characterization of the underground channel. So far, none of the existing models fully capture all the components of electromagnetic signal propagation in the soil medium. In this paper, three major components that influence underground communication are identified: direct, reflected, and lateral waves, where the latter has not been analyzed for WUSNs so far. Accordingly, a closed-form three-wave (3W) channel model is developed based on EM propagation principles of signals through soil. The 3W channel model is shown to agree well with both underground testbed experiments and EM analysis based on Maxwell’s equations, which cannot be represented in closed-form

    Signals in the Soil: An Introduction to Wireless Underground Communications

    Get PDF
    In this chapter, wireless underground (UG) communications are introduced. A detailed overview of WUC is given. A comprehensive review of research challenges in WUC is presented. The evolution of underground wireless is also discussed. Moreover, different component of UG communications is wireless. The WUC system architecture is explained with a detailed discussion of the anatomy of an underground mote. The examples of UG wireless communication systems are explored. Furthermore, the differences of UG wireless and over-the-air wireless are debated. Different types of wireless underground channel (e.g., In-Soil, Soil-to-Air, and Air-to-Soil) are reported as well

    A Survey on Subsurface Signal Propagation

    Get PDF
    Wireless Underground Communication (WUC) is an emerging field that is being developed continuously. It provides secure mechanism of deploying nodes underground which shields them from any outside temperament or harsh weather conditions. This paper works towards introducing WUC and give a detail overview of WUC. It discusses system architecture of WUC along with the anatomy of the underground sensor motes deployed in WUC systems. It also compares Over-the-Air and Underground and highlights the major differences between the both type of channels. Since, UG communication is an evolving field, this paper also presents the evolution of the field along with the components and example UG wireless communication systems. Finally, the current research challenges of the system are presented for further improvement of the WUCs

    Channel Characterization for Wireless Underground Sensor Networks

    Get PDF
    Wireless Underground Sensor Networks (WUSNs) are natural extensions of the established Wireless Sensor Network (WSN) phenomenon and consist of sensors buried underground which communicate through soil. WUSNs have the potential to impact a wide variety of applications including precision agriculture, environmental monitoring, border patrol, and infrastructure monitoring. The main difference between WUSNs and traditional wireless networks is the communication medium. However, a comprehensive wireless underground channel model for WUSNs has not been developed so far. In this thesis, the Soil Subsurface Wireless Communication (SSWC) channel model is developed based on an extensive empirical study in a large agriculture field. The results of the experiments provide important insights for the model, which have not been available in the wireless communication literature. The SSWC channel model captures the signal attenuation and bit error rate (BER) in underground settings based on five components: (1) The dielectric soil model estimates the soil permittivity based on soil parameters including soil moisture. (2) The direct wave model captures the attenuation of the line-of-sight signal between sender and receiver. (3) The reflected wave model considers the attenuation on the signal which is reflected at the soil surface before reaching the receiver. (4) The lateral wave model estimates the attenuation of a third front of waves that potentially reach the receiver. Due to the fact that a significant portion of the lateral waves’ propagation occurs over-the-air, this form of transmission is an excellent option to extend the communication range without increasing the power consumption. (5) The signal superposition model captures the phase shifting between the mentioned waves, the resulting attenuation, and the bit error rate. The SSWC model is validated through extensive underground experiments. To the best of our knowledge, this is the first channel model for the underground to underground communication in WUSNs with comprehensive set of features. The SSWC channel model is fundamental for the development of cross-layer communication solutions for WUSNs and for the development of underground to aboveground and aboveground to underground channel models for WUSNs

    Modulation Schemes and Connectivity in Wireless Underground Channel

    Get PDF
    In this chapter, a thorough treatment of the modulation schemes for UG Wireless is presented. The effects of soil texture and water content on the capacity of multi-carrier modulation in WUC are discussed. The multi-carrier capacity model results are analyzed. Moreover, the underground MIMO design for underground communications is explained thoroughly. An analysis of medium access in wireless underground is done as well. Furthermore, the soil properties are considered for cross-layer communications of UG wireless. The performance analysis of traditional modulation schemes is also considered. The soil moisture-based modulation approach is also explored in this chapter. The connectivity and diversity reception approaches are discussed for wireless underground communications. The connectivity and interference models are studied for Ad-Hoc and Hybrid Networks. The topology control mechanisms for maintaining network connectivity are explored for maximizing network capacity under the physical models (e.g., the protocol interference model and physical interference model). Moreover, the underground diversity is examined for 3W-Rake receiver and coherent detection along with experimental evaluation and comprehensive analysis of performance of equalization techniques

    Underground Phased Arrays and Beamforming Applications

    Get PDF
    This chapter presents a framework for adaptive beamforming in underground communication. The wireless propagation is thoroughly analyzed to develop a model using the soil moisture as an input parameter to provide feedback mechanism while enhancing the system performance. The working of array element in the soil is analyzed. Moreover, the effect of soil texture and soil moisture on the resonant frequency and return loss is studied in detail. The wave refraction from the soil–air interface highly degrades the performance of the system. Furthermore, to beam steering is done to achieve high gain for lateral component improving the UG communication. The angle enhancing the lateral wave depends upon dielectric properties and usually ranges from 0∘ to 16∘. These dielectric properties change with the change in soil moisture and soil texture. It is shown from the experiments that optimal UG lateral angle is high at lower soil moisture readings and decreases with decrease in soil moisture. A planar structure of antenna array and different techniques for optimization are proposed for enhanced soil moisture adaptive beamforming. UG channel impulse response is studied from the beamforming aspect to identify the components of EM waves propagating through the soil. An optimum steering method for beamforming is presented which adapts to the changing values of soil moisture. Finally, the limitations of UG beamforming are presented along with the motivation to use it

    Pulses in the Sand: Impulse Response Analysis of Wireless Underground Channel

    Get PDF
    Wireless underground sensor networks (WUSNs) are becoming ubiquitous in many areas and designing robust systems requires extensive understanding of the underground (UG) channel characteristics. In this paper, UG channel impulse response is modeled and validated via extensive experiments in indoor and field testbed settings. Three distinct types of soils are selected with sand and clay contents ranging from 13% to 86% and 3% to 32%, respectively. Impacts of changes in soil texture and soil moisture are investigated with more than 1,200 measurements in a novel UG testbed that allows flexibility in soil moisture control. Time domain characteristics of channel such as RMS delay spread, coherence bandwidth, and multipath power gain are analyzed. The analysis of the power delay profile validates the three main components of the UG channel: direct, reflected, and lateral waves. It is shown that RMS delay spread follows a log-normal distribution. The coherence bandwidth ranges between 650 kHz and 1.15MHz for soil paths of up to 1m and decreases to 418 kHz for distances above 10m. Soil moisture is shown to affect RMS delay spread non-linearly, which provides opportunities for soil moisture-based dynamic adaptation techniques. The model and analysis paves the way for tailored solutions for data harvesting, UG sub-carrier communication, and UG beamforming
    • …
    corecore