20 research outputs found

    Fairness-Oriented Semichaotic Genetic Algorithm-Based Channel Assignment Technique for Node Starvation Problem in Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks (WMNs) have emerged as a scalable, reliable, and agile wireless network that supports many types of innovative technologies such as the Internet of Things (IoT), Wireless Sensor Networks (WSN), and Internet of Vehicles (IoV). Due to the limited number of orthogonal channels, interference between channels adversely affects the fair distribution of bandwidth among mesh clients, causing node starvation in terms of insufficient bandwidth distribution, which impedes the adoption of WMN as an efficient access technology. Therefore, a fair channel assignment is crucial for the mesh clients to utilize the available resources. However, the node starvation problem due to unfair channel distribution has been vastly overlooked during channel assignment by the extant research. Instead, existing channel assignment algorithms equally distribute the interference reduction on the links to achieve fairness which neither guarantees a fair distribution of the network bandwidth nor eliminates node starvation. In addition, the metaheuristic-based solutions such as genetic algorithm, which is commonly used for WMN, use randomness in creating initial population and selecting the new generation which usually leads the search to local minima. To this end, this study proposes a Fairness-Oriented Semi-Chaotic Genetic Algorithm-Based Channel Assignment Technique (FA-SCGA-CAA) to solve Nodes Starvation Problem in Wireless Mesh Networks. FA-SCGA-CAA maximizes link fairness while minimizing link interference using a Genetic Algorithm (GA) with a novel nonlinear fairness-oriented fitness function. The primary chromosome with powerful genes is created based on multi-criterion links ranking channel assignment algorithm. Such a chromosome was used with a proposed semi-chaotic technique to create a strong population that directs the search towards the global minima effectively and efficiently. The proposed semi-chaotic was also used during the mutation and parent selection of the new genes. Extensive experiments were conducted to evaluate the proposed algorithm. Comparison with related work shows that the proposed FA_SCGA_CAA reduced the potential node starvation by 22% and improved network capacity utilization by 23%. It can be concluded that the proposed FA_SCGA_CAA is reliable to maintain high node-level fairness while maximizing the utilization of the network resources, which is the ultimate goal of many wireless networks

    Channel Assignment Method for Maximizing Throughput in the Internet of Things System

    Get PDF
    The growth of the number of interconnected wireless devices such as the Internet of Things (IoT) is continuously increasing across various sectors, including smart buildings, smart offices, smart cities, and others. According to estimates, by the year 2030, there will be at least 50 billion devices interconnected through networks. The escalating number of uncontrolled wireless devices can lead to various issues such as interference, collisions, and data loss, resulting in an overall decline in network system performance. This study aims to propose a scenario as an alternative solution to optimize the overall network performance in the system by assigning channels to each interconnected wireless pair to reduce the impact of interference. This research indicates that the proposed method successfully enhances the system throughput performance by 39.75% compared to the condition where all wireless pairs operate on the same channel, thereby outperforming several other comparative methods.The growth in the number of wireless devices, such as the Internet of Things (IoT), interconnectedly continues to rise across various sectors like smart buildings, smart cities, and others. It is estimated that by 2030, at least 50 billion devices will be interconnected through networks. The escalating number of uncontrollable wireless devices can lead to various issues such as interference, collisions, and data loss, resulting in an overall system performance decline. This research aims to propose scenarios as an alternative solution to optimize the overall network performance through channel assignment for each interconnected wireless pair, reducing the impact of interference through a computational approach. Minimizing this impact will directly enhance the overall system throughput performance. The research results demonstrate that the proposed scenarios successfully improved the system throughput performance by 39.75% compared to the condition where all wireless pairs operate on the same channel, surpassing several other comparative algorithms

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Differential Evolution in Wireless Communications: A Review

    Get PDF
    Differential Evolution (DE) is an evolutionary computational method inspired by the biological processes of evolution and mutation. DE has been applied in numerous scientific fields. The paper presents a literature review of DE and its application in wireless communication. The detailed history, characteristics, strengths, variants and weaknesses of DE were presented. Seven broad areas were identified as different domains of application of DE in wireless communications. It was observed that coverage area maximisation and energy consumption minimisation are the two major areas where DE is applied. Others areas are quality of service, updating mechanism where candidate positions learn from a large diversified search region, security and related field applications. Problems in wireless communications are often modelled as multiobjective optimisation which can easily be tackled by the use of DE or hybrid of DE with other algorithms. Different research areas can be explored and DE will continue to be utilized in this contex

    Ultra-low power IoT applications: from transducers to wireless protocols

    Get PDF
    This dissertation aims to explore Internet of Things (IoT) sensor nodes in various application scenarios with different design requirements. The research provides a comprehensive exploration of all the IoT layers composing an advanced device, from transducers to on-board processing, through low power hardware schemes and wireless protocols for wide area networks. Nowadays, spreading and massive utilization of wireless sensor nodes pushes research and industries to overcome the main limitations of such constrained devices, aiming to make them easily deployable at a lower cost. Significant challenges involve the battery lifetime that directly affects the device operativity and the wireless communication bandwidth. Factors that commonly contrast the system scalability and the energy per bit, as well as the maximum coverage. This thesis aims to serve as a reference and guideline document for future IoT projects, where results are structured following a conventional development pipeline. They usually consider communication standards and sensing as project requirements and low power operation as a necessity. A detailed overview of five leading IoT wireless protocols, together with custom solutions to overcome the throughput limitations and decrease the power consumption, are some of the topic discussed. Low power hardware engineering in multiple applications is also introduced, especially focusing on improving the trade-off between energy, functionality, and on-board processing capabilities. To enhance these features and to provide a bottom-top overview of an IoT sensor node, an innovative and low-cost transducer for structural health monitoring is presented. Lastly, the high-performance computing at the extreme edge of the IoT framework is addressed, with special attention to image processing algorithms running on state of the art RISC-V architecture. As a specific deployment scenario, an OpenCV-based stack, together with a convolutional neural network, is assessed on the octa-core PULP SoC

    DYNAMIC ROUTING WITH CROSS-LAYER ADAPTATIONS FOR MULTI-HOP WIRELESS NETWORKS

    Get PDF
    In recent years there has been a proliferation of research on a number of wireless multi-hop networks that include mobile ad-hoc networks, wireless mesh networks, and wireless sensor networks (WSNs). Routing protocols in such networks are of- ten required to meet design objectives that include a combination of factors such as throughput, delay, energy consumption, network lifetime etc. In addition, many mod- ern wireless networks are equipped with multi-channel radios, where channel selection plays an important role in achieving the same design objectives. Consequently, ad- dressing the routing problem together with cross-layer adaptations such as channel selection is an important issue in such networks. In this work, we study the joint routing and channel selection problem that spans two domains of wireless networks. The first is a cost-effective and scalable wireless-optical access networks which is a combination of high-capacity optical access and unethered wireless access. The joint routing and channel selection problem in this case is addressed under an anycasting paradigm. In addition, we address two other problems in the context of wireless- optical access networks. The first is on optimal gateway placement and network planning for serving a given set of users. And the second is the development of an analytical model to evaluate the performance of the IEEE 802.11 DCF in radio-over- fiber wireless LANs. The second domain involves resource constrained WSNs where we focus on route and channel selection for network lifetime maximization. Here, the problem is further exacerbated by distributed power control, that introduces addi- tional design considerations. Both problems involve cross-layer adaptations that must be solved together with routing. Finally, we present an analytical model for lifetime calculation in multi-channel, asynchronous WSNs under optimal power control

    Proposta de um protocolo de roteamento autoconfigurável para redes mesh em Bluetooth Low Energy (BLE) baseado em proactive source routing

    Get PDF
    Orientador: Yuzo IanoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: A Internet das Coisas (Internet of Things ¿ IoT) visa a criação de ambientes inteligentes como domótica, comunicação intra-veicular e redes de sensores sem fio (Wireless Sensor Network ¿ WSN), sendo que atualmente essa tecnologia vem crescendo de forma rápida. Uma das tecnologias sem fio utilizada para aplicações de curta distância que se encontra mais acessível à população, em geral, é o Bluetooth. No final de 2010, o Bluetooth Special Interest Group (Bluetooth SIG), lançou a especificação Bluetooth 4.0 e, como parte dessa especificação, tem-se o Bluetooth Low Energy (BLE). O BLE é uma tecnologia sem fio de baixíssimo consumo de potência, que pode ser alimentada por uma bateria tipo moeda, ou até mesmo por indução elétrica (energy harvesting). A natureza do Bluetooth (e BLE) é baseada na conexão do tipo Mestre/Escravo. Muitos estudos mostram como criar redes mesh baseadas no Bluetooth clássico, que são conhecidas como Scatternets, onde alguns nós são utilizados como escravos com o objetivo de repassar os dados entre os mestres. Contudo, o BLE não tinha suporte para a mudança entre mestre e escravo até o lançamento da especificação Bluetooth 4.1, em 2013. A capacidade de uma tecnologia sem fio para IoT de criar uma rede ad-hoc móvel (Mobile Ad-hoc Network ¿ MANET) é vital para poder suportar uma grande quantidade de sensores, periféricos e dispositivos que possam coexistir em qualquer ambiente. Este trabalho visa propor um novo método de autoconfiguração para BLE, com descoberta de mapa de roteamento e manutenção, sem a necessidade de mudanças entre mestre e escravo, sendo compatível com os dispositivos Bluetooth 4.0, assim como com os 4.1 e mais recentes. Qualquer protocolo de mensagens pode aproveitar o método proposto para descobrir e manter a topologia de rede mesh em cada um dos seus nósAbstract: Nowadays, the Internet of Things (IoT) is spreading rapidly towards creating smart environments. Home automation, intra-vehicular interaction, and wireless sensor networks (WSN) are among the most popular applications discussed in IoT literature. One of the most available and popular wireless technologies for short-range operations is Bluetooth. In late 2010, the Bluetooth Special Interest Group (SIG) launched the Bluetooth 4.0 Specification, which brings Bluetooth Low Energy (BLE) as part of the specification. BLE characterises as being a very low power wireless technology, capable of working on a coin-cell or even by energy scavenging. Nevertheless, the nature of Bluetooth (and BLE) has always been a connection-oriented communication in a Master/Slave configuration. Several studies exist showing how to create mesh networks for Classic Bluetooth, called Scatternets, by utilizing some nodes as slaves to relay data between Masters. However, BLE didn¿t support role changing until the 4.1 Specification released in 2013. The capability of a wireless technology to create a Mobile Ad-Hoc Network (MANET) is vital for supporting the plethora of sensors, peripherals, and devices that could coexist in any IoT environment. This work focuses on proposing a new autoconfiguring dynamic address allocation scheme for a BLE Ad-Hoc network, and a network map discovery and maintenance mechanism that doesn¿t require role changing, thus being possible to implement it in 4.0 compliant devices as well as 4.1 or later to develop a MANET. Any ad-hoc routing protocol can utilise the proposed method to discover, keep track, and maintain the mesh network node topology in each of their nodesDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia ElétricaCAPE
    corecore