224 research outputs found

    A chain rule for the expected suprema of Gaussian processes

    Full text link
    The expected supremum of a Gaussian process indexed by the image of an index set under a function class is bounded in terms of separate properties of the index set and the function class. The bound is relevant to the estimation of nonlinear transformations or the analysis of learning algorithms whenever hypotheses are chosen from composite classes, as is the case for multi-layer models

    A Chain Rule for the Expected Suprema of Bernoulli Processes

    Full text link
    We obtain an upper bound on the expected supremum of a Bernoulli process indexed by the image of an index set under a uniformly Lipschitz function class in terms of properties of the index set and the function class, extending an earlier result of Maurer for Gaussian processes. The proof makes essential use of recent results of Bednorz and Latala on the boundedness of Bernoulli processes.Comment: 14 page

    Optimal Rates for Random Fourier Features

    Full text link
    Kernel methods represent one of the most powerful tools in machine learning to tackle problems expressed in terms of function values and derivatives due to their capability to represent and model complex relations. While these methods show good versatility, they are computationally intensive and have poor scalability to large data as they require operations on Gram matrices. In order to mitigate this serious computational limitation, recently randomized constructions have been proposed in the literature, which allow the application of fast linear algorithms. Random Fourier features (RFF) are among the most popular and widely applied constructions: they provide an easily computable, low-dimensional feature representation for shift-invariant kernels. Despite the popularity of RFFs, very little is understood theoretically about their approximation quality. In this paper, we provide a detailed finite-sample theoretical analysis about the approximation quality of RFFs by (i) establishing optimal (in terms of the RFF dimension, and growing set size) performance guarantees in uniform norm, and (ii) presenting guarantees in LrL^r (1≤r<∞1\le r<\infty) norms. We also propose an RFF approximation to derivatives of a kernel with a theoretical study on its approximation quality.Comment: To appear at NIPS-201

    Quantitative version of the Kipnis-Varadhan theorem and Monte Carlo approximation of homogenized coefficients

    Get PDF
    This article is devoted to the analysis of a Monte Carlo method to approximate effective coefficients in stochastic homogenization of discrete elliptic equations. We consider the case of independent and identically distributed coefficients, and adopt the point of view of the random walk in a random environment. Given some final time t>0, a natural approximation of the homogenized coefficients is given by the empirical average of the final squared positions re-scaled by t of n independent random walks in n independent environments. Relying on a quantitative version of the Kipnis-Varadhan theorem combined with estimates of spectral exponents obtained by an original combination of PDE arguments and spectral theory, we first give a sharp estimate of the error between the homogenized coefficients and the expectation of the re-scaled final position of the random walk in terms of t. We then complete the error analysis by quantifying the fluctuations of the empirical average in terms of n and t, and prove a large-deviation estimate, as well as a central limit theorem. Our estimates are optimal, up to a logarithmic correction in dimension 2.Comment: Published in at http://dx.doi.org/10.1214/12-AAP880 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore